Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ịman
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Ngọc Anh Minh
15 tháng 8 2023 lúc 8:55

\(\Leftrightarrow x^2+2xy+y^2-xy-x^2y^2=0\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)

VT là 1 số chính phương mà vế phải là tích 2 số tự nhiên liên tiếp

\(\Rightarrow\left[{}\begin{matrix}xy=0\\xy+1=0\end{matrix}\right.\)

+ Với \(xy=0\Rightarrow\left(x+y\right)^2=x^2+y^2=0\Rightarrow x=y=0\)

+ Với \(xy+1=0\Rightarrow xy=-1\Rightarrow\left[{}\begin{matrix}x=1;y=-1\\x=-1;y=1\end{matrix}\right.\)

võ dương thu hà
Xem chi tiết
Achana
Xem chi tiết
Lâm Minh Anh
Xem chi tiết
hoang phuc
28 tháng 10 2016 lúc 11:34

chiu roi

ban oi

tk nhe

Thanh Tùng DZ
29 tháng 5 2020 lúc 18:51

\(5x^2+x\left(5y-7\right)+5y^2-14y=0\)

\(\Delta=\left(5y-7\right)^2-4.5.\left(5y^2-14y\right)=-75y^2+210y+49\)

Để PT có nghiệm nguyên thì \(\Delta\ge0\)

từ đó tìm được các giá trị nguyên của y, rồi tìm được x

Khách vãng lai đã xóa
nguyễn đình thành
Xem chi tiết
Thanh Tùng DZ
29 tháng 5 2020 lúc 19:22

Để Phương trình có nghiệm nguyên thì \(\Delta=\left(-y\right)^2-4.1.\left(y^2-4\right)\ge0\Leftrightarrow-3y^2+16\ge0\)

\(\Leftrightarrow y^2\le\frac{16}{3}\)\(\Leftrightarrow\sqrt{\frac{-16}{3}}\le y\le\sqrt{\frac{16}{3}}\Leftrightarrow-2\le y\le2\)( vì y nguyên )

từ đó tìm được y,x

Khách vãng lai đã xóa
VIỆT ANH NGUYỄN
22 tháng 8 2020 lúc 7:49

1+1=2

2+2=3

3+3=4

4+4=5

5+5=6

6+6=7

7+7=8

8+8=9

9+9=10 ^^

Khách vãng lai đã xóa
NGUYỄN DOÃN ANH THÁI
Xem chi tiết
alibaba nguyễn
13 tháng 11 2016 lúc 19:33

x2 - xy + y2 - 4 = 0

Xét phương trình theo nghiệm x. Ta có

Để pt có nghiệm thì ∆\(\ge0\)

<=> y2 - 4(y2 - 4) \(\ge0\)

<=> \(y^2\le\frac{16}{3}\Leftrightarrow-2\le y\le2\)

Thế vào sẽ tìm được x, y nhé

trinh thi hang
Xem chi tiết
Nguyễn Minh Đăng
28 tháng 2 2021 lúc 16:25

Ta có: \(x^2+x=x^2y-xy+y\)

\(\Leftrightarrow x^2+x-x^2y+xy-y=0\)

\(\Leftrightarrow x^2\left(1-y\right)+x\left(1+y\right)-y=0\)

\(\Delta=\left(1+y\right)^2+4y\left(1-y\right)\)

\(=y^2+2y+1+4y-4y^2=-3y^2+6y+1\)

Để PT có nghiệm thì \(\Delta\ge0\Leftrightarrow-3y^2+6y+1\ge0\)

\(\Rightarrow\frac{3+2\sqrt{3}}{3}\ge y\ge\frac{3-2\sqrt{3}}{3}\Leftrightarrow2\ge x\ge0\)

Vì y nguyên nên ta xét các TH sau:

TH1: \(y=0\Rightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(tm\right)}\)

TH2: \(y=1\Rightarrow x^2+x=x^2-x+1\Leftrightarrow2x=1\Rightarrow x=\frac{1}{2}\left(ktm\right)\)

TH3: \(y=2\Rightarrow x^2+x=2x^2-2x+2\Leftrightarrow x^2-3x+2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy ta có 4 cặp số (x;y) thỏa mãn ...

Khách vãng lai đã xóa
Hà Việt
Xem chi tiết