Chứng tỏ rằng : ab + ba chia hết cho 11
abc + cba chia hết cho 99
Chứng tỏ rằng
a, ab+ba chia hết cho 11
b, abc-cba chia hết cho 99
a) ab + ba = (10a + b) + (10b + a) = 11a + 11b = 11.(a + b) chia hết cho 11
b) abc - cba = (100a + 10b + c) - (100c + 10b + a) = 99a - 99c = 99.(a - c) chia hết cho 99
chứng minh rằng a) \(\overline{abcabc}\) chia hết cho 7, 11, 13
b) \(\overline{ab}-\overline{ba}\) chia hết cho 9
c) \(\overline{abc}-\overline{cba}\) chia hết cho 99
a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)
b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)
c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)
HÃY chứng minh rằng :
A, ab + ba chia hết cho 11
B, abc - cba chia hết cho 99
A, ab + bc chia het cho 11
Ta có : 10 a +b +10b +a
=11a +11b
=11 (a+b) chia het cho 11
B, abc - cba chia het cho 99
Ta có :( 100a +b +c ) - ( 100c +b+a )
=99a - 99c
=99 (a-b) chia het cho 99
xin loi nhung mik lam cau B hinh nhu sai roi
A, ab + ba chia hết cho 11
= 10a + b + 10b + a
= 11a + 11b
= 11 (a + b)
=> vì 11 (a + b) chia hết cho 11
=> ab + ba chia hết cho 11
Chứng tỏ rằng :
a)ab + ba chia hết cho 11
b)abc - cba chia hết cho 99
a)a. ab+ba = 10a+b+10b+a = 11a+11b = 11(a+b) chia hết cho 11
=> đpcm
b) Ta có:
abc ‐ cba = 100a+10b+c‐100c‐10b‐a = ﴾100a‐a﴿ + ﴾10b‐10b﴿ ‐ ﴾100c‐c﴿ = 99a ‐ 99c = 99. ﴾a‐c﴿ chia hết cho 99 ﴾đpcm﴿
Chứng tỏ rằng :
a, ab + ba chia hết cho 11
b,abc - cba chia hết cho 99
a) ab + ba = 10a + b + 10b + a = 11a + 11b = 11(a + b) chia hết cho 11
b) abc - cba = (100a + 10b + c) - (100c + 10b + a) = 99a - 99c = 99(a - c) chia hết cho 99
Trả lời nhanh hộ mình với mình k cho
a, \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)\)chia hết cho 11 => đpcm
b, \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a+99c=99\left(a+c\right)\)chia hết cho 99=> đpcm
Chứng tỏ rằng : ab+ba chia hết cho 11 ; abc- cba chia hết cho 99
ab+ba=10a+b+10b+a=(10a+a)+(10b+b)=11a+11b=11(a+b)(chia hết cho 11)
abc-cba=100a+10b+c-100c-10b-1a=(100a-1a)+(10b-10b)-(100c-c)=99a-99c=99(a-c)(chia hết cho 99)
đpcm
Chứng tỏ rằng : ab+ba chia hết cho 11 ; abc-cba chia hết cho 99
ab + ba = 10a + b + 10b + a = 11a + 11b = 11(a + b) => ab + ba chia hết cho 11.
abc - cba = (100a + 10b + c) - (100c + 10b + a) = 100a + 10b + c - 100c - 10b - a = (100a - a) + (10b - 10b) + (c - 100c) = 99a - 99c = 99(a - c) => abc - cba chia hết cho 99
Chứng tỏ rằng;
a, ab + ba chia het cho 11
b, abc - cba chia hết cho 99
cho abc khác 0 CMR:
a) M=ab+ba chia hết cho 11
b)abc-cba chia hết cho 99
c)Nếu abcd chia hết cho 99 thì ab+cd chia hết cho 99
chứng tỏ rằng
a) ab+ab chia hết cho 11
b) abc-cba chia hết cho 99
a) Hình như cái kia là ba chứ ko fai ab nếu là ab thì khó mà chia hết
Ta có: ab + ba = 10a+b+10b+a=11a+11b=11(a+b) chia hết cho11
=> ab + ba chia hết cho11