Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bảo Ngọc
Xem chi tiết
Mai Anh
15 tháng 2 2018 lúc 18:15

\(P=x^4+2x^3+3x^2+2x+1\)

\(=\left(x^4+2x^2+1\right)+\left(2x^3+2x\right)+x^2\)

\(=\left(x^2+1\right)^2+2x\left(x^2+1\right)+x^2\)

\(=\left(x^2+x+1\right)^2\)

Mai Anh
15 tháng 2 2018 lúc 18:24

giải tiếp : 

Vì \(x^2+x+1=\left(x^2+2x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}\)

                            \(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Nên  \(P\ge\left(\frac{3}{4}\right)^2=\frac{9}{16}\)

Dấu "=" xảy ra khi và chỉ khi  \(x=-\frac{1}{2}\)

Nguyễn Thị Anh Thư
24 tháng 11 2018 lúc 18:02

bạn kacura làm thiếu rồi mình bổ sung tiếp bạn ấy nha:

ta có :P là giá trị nhỏ nhất khi \(x^2+x+1\)là nhỏ nhất( giá trị nhỏ nhất của biểu thức)

\(\Leftrightarrow x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

đẳng thức xảy ra khi : \(x=\frac{-1}{2}\)

\(\Leftrightarrow P\ge\left(\frac{3}{4}\right)^2\)

\(\Leftrightarrow P\ge\frac{9}{16}\)

=> GIÁ TRỊ NHỎ NHẤT CỦA BIỂU THỨC LÀ:\(\frac{1}{2}\)

bài này học nhóm nên mk biết làm:

# chúc bạn học tốt #

Thanh Tu Nguyen
Xem chi tiết
Nguyễn Đình Tùng
15 tháng 9 2023 lúc 22:20

\(x^4\)-2x\(^3\)+3x\(^2\)-2x+2

=(\(x^4\)-2x\(^3\)+x\(^2\))+(2x\(^2\)-2x)+2

=(x\(^2\)-x)\(^2\)+2(x\(^2\)-x)+2

=(x\(^2\)-x)\(^2\)+2(x\(^2\)-x)+1+1

=(x\(^2\)-x+1)\(^2\)+1

=[x\(^2\)-2.x.\(\dfrac{1}{2}\)+\(\left(\dfrac{1}{2}\right)^2\)+\(\dfrac{3}{4}\)]\(^2\)+1

=[(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)]2+1

Ta có:(x-\(\dfrac{1}{2}\))\(^2\)\(\ge0\)

=>(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)\(\ge\dfrac{3}{4}\)

=>[(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)]2\(\ge\dfrac{9}{16}\)

=>[(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)]2+1\(\ge\dfrac{9}{16}+1\)=\(\dfrac{25}{16}\)

Vậy Min F(x)=\(\dfrac{25}{16}\)khi x-\(\dfrac{1}{2}\)=0=>x=\(\dfrac{1}{2}\)

 

       
Nguyễn Đình Tùng
15 tháng 9 2023 lúc 22:20

thắc mắc j hỏi mik nha

Nguyễn Đình Tùng
15 tháng 9 2023 lúc 22:22

bài tâm huyết lắm nên cho mik xin 1 đúng nhaaaaaa

Nguyen Thuy Dung
Xem chi tiết
Nguyễn Ngọc Mai
11 tháng 4 2018 lúc 19:54
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
Huy Hoang
5 tháng 6 2020 lúc 23:01

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)

Khách vãng lai đã xóa
Fuiki Fuiko
Xem chi tiết
Nguyễn Trần Hoa Cương
Xem chi tiết

a: Để \(\dfrac{3x-2}{4}\) không nhỏ hơn \(\dfrac{3x+3}{6}\) thì \(\dfrac{3x-2}{4}>=\dfrac{3x+3}{6}\)

=>\(\dfrac{6\left(3x-2\right)}{24}>=\dfrac{4\left(3x+3\right)}{24}\)

=>18x-12>=12x+12

=>6x>=24

=>x>=4

b: Để \(\left(x+1\right)^2\) nhỏ hơn \(\left(x-1\right)^2\) thì \(\left(x+1\right)^2< \left(x-1\right)^2\)

=>\(x^2+2x+1< x^2-2x+1\)

=>4x<0

=>x<0

c: Để \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\) thì

\(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}< =\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)

=>\(\dfrac{2x-3+5x\left(x-2\right)}{35}< =\dfrac{5x^2-7\cdot\left(2x-3\right)}{35}\)

=>\(2x-3+5x^2-10x< =5x^2-14x+21\)

=>-8x-3<=-14x+21

=>6x<=24

=>x<=4

Dũng Đặng
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 12 2021 lúc 22:18

b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)

Trần Trọng Quang
Xem chi tiết
Yen Nhi
30 tháng 6 2021 lúc 21:50

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

Khách vãng lai đã xóa
Yen Nhi
30 tháng 6 2021 lúc 21:56

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

Khách vãng lai đã xóa
Yen Nhi
30 tháng 6 2021 lúc 22:03

\(5.\)

\(x^2-48x+65\)

\(=\left(x-24\right)^2\ge0\)với \(\forall x\)

\(\left(x-24\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow\left(x-24\right)^2-511\ge-511\)với \(\forall x\)

Vậy \(Max=-511\)khi \(x=24\)

Khách vãng lai đã xóa
hung
Xem chi tiết
Nguyễn Triệu Khả Nhi
20 tháng 11 2017 lúc 10:09

A=x4+12+2x3+2x+3x2

A=(x2)2+2(x2)(1)+(1)2-2x2+2x(x2+1)+3x2

A=(x2+1)2+2x(x2+1)+x2

Đặt a=x2+1

Khi đó đa thức trở thành:

A=a2+2ax+x2

A=(a+x)2

A=(x2+1+x)2

\(A=\left(x\right)^2+2\left(x\right)\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2-\frac{1}{4}+\frac{4}{4}\)

\(A=\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]^2\)

Ta có:

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Leftrightarrow A\ge\frac{3}{4}\)

Dấu"=" xảy ra khi:

\(x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy GTNN của A là \(\frac{3}{4}\)khi x=\(\frac{-1}{2}\)

Nguyễn Châu Anh
20 tháng 11 2017 lúc 10:12

hình như theo cách giải của Nguyễn Triệu Khả Nhi thì GTNN của P=0 thì mới đúng

Cậu Bé Ngu Ngơ
19 tháng 12 2017 lúc 10:45

Theo lời giải của bạn Khả Nhi thì P chỉ\(\ge\frac{3}{4}^2=\frac{9}{16}.\)Mình góp ý zậy thui

Hoàng Thị Yến Nhi
Xem chi tiết
Nguyễn Huy Tú
3 tháng 5 2021 lúc 10:05

\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)

Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2 

\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)

\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)

\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6 

Khách vãng lai đã xóa
Nguyễn Huy Tú
3 tháng 5 2021 lúc 10:11

\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)

\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2 

\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)

\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4 

Khách vãng lai đã xóa