Cho S=S+S2+S3+.................+S2040
a. Chứng minh S chia hết cho 6 và 31
b. Tính S
Cho S = 1 + 32 + 34 + \(3^6\) +... + \(3^{98}\). Tính S và chứng minh S chia hết cho 10
Ta có: \(S=1+3^2+3^4+3^6+...+3^{98}\)
\(=\left(1+3^2\right)+\left(3^4+3^6\right)+...+\left(3^{96}+3^{98}\right)\)
\(=10+3^4\cdot10+...+3^{96}\cdot10\)
\(=10\left(1+3^4+...+3^{96}\right)⋮10\)(ĐPCM)
cho S= 1+3^2+3^4+3^6+.......+3^98 . Tính S và chứng minh S chia hết cho 10
( chia hết cho 10 mình biết rùi)
3^2xS=3^2+3^4+3^6+...+3^100
=>3^2S-S=8S=3^100-3^2
=>S=(3^100-3^2):8
sai rùi không có cách nào hay hơn à
mình làm theo cách này kết quả khác.có cách nào hơn thì làm nha
= (1+3^2) + (3^4+3^6) + ... +(3^96+3^98)
=10 + 3^4(3^2+1) + 3^8(3^2+1) + ...+3^96(3^2+1)
=10 + 3^4 .10 + 3^8 . 10 +...+3^96 . 10
suy ra số đó chia hết cho 10
các bạn lưu ý dấu . là dấu nhân đó nha.
đừng quên nha vì bạn mà mình còn chưa giải đây này
cho tổng :S=3^0+3^2+3^4+3^6+...........................+3^2014.tính S và chứng minh S chia hết cho 7
\(S=3^0+3^2+3^4+3^6+...+3^{2014}\)
\(=1+3^2+3^4+3^6+...+3^{2014}\)
\(=\left(1+3^2\right)+3^4\left(1+3^2\right)+...+3^{2012}\left(1+3^2\right)\)
\(=7+3^4.7+...+3^{2012}.7=7\left(1+3^4+...+3^{2012}\right)⋮7\)
Vậy ta có đpcm
cho S3+3^2+3^3+......+3^100
a,chứng minh S chia hết cho 4
b,chứng minh 2S+3 là một lũy thừa của 3
c,tim chu so tan cung cua S
a, S=(3+3^2)+(3^3+3^4)+....+(3^99+3^100)
S=3.(1+3)+3^3.(1+3)+....+3^99+(1+3)
S=3.4+3^3.4+...+3^99.4 chia hết cho 4
Vậy S chia hết cho 4
1.a,chứng minh 12^4.54^2=36^5
b,10^6-5^7 chia hết cho 59
c,cho S=1+3^1+3^2+3^3…+3^99 chứng minh S chia hết cho 4, S chia hết cho 40
2. Tính: 10^4.27^3/6^4.15^4
cho S = 3 + 3^2 +3^4+ 3^6+...+3^2002
a,tính S
b, chứng minh S chia hết cho 7
b) S=(30+32+34)+...+(31998+32000+32002)
S= 91+...+31998(1+32+34)
S=91+...+31998.91
S=91(1+36+...+31998)
S=13.7.(1+36+...+31998) chia hết cho 7
Cho S = 3^0 + 3^2 + 3^4 + 3^6 +....+ 3^2002
a) Tính S
b) Chứng minh S chia hết cho 7
a)nhân S với 32 ta dc:
9S=3^2+3^4+...+3^2002+3^2004
=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)
=>8S=32004-1
=>S=32004-1/8
b) ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7
ta có:32004-1=(36)334-1=(36-1).M=7.104.M
=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7
cho S= 3^0+ 3^2+3^4+3^6+.....+3 ^2020.
a) Tính S.
b) chứng minh S chia hết cho 7
Nhân S với 3^2 ta được 9S=3^2+3^4+....+3^2002+3^2004
=>9S-S=(3^2+3^4+....+3^2004)-(3^0+3^2+....+3^2002)
=>8S=3^2004-1
=>S=(3^2004-1)/8
b,ta có S là sô nguyên nên fải chung minh 3^2004-1chia hết cho 7
ta có : 3^2004-1=(3^6)^334-1=(3^6-1).M=728.M=7.104.M
=>3^2004 chia hết cho 7. Mặt khác (7;8)=1 nên S chia hết cho 7
Tính S=1+32+34+36+....+398 . Tính S và chứng minh S chia hết cho 10
Giúp mik với .
Ta có S=1+32+34+...+398=>32.S=32+34+36+....+3100
=(S-1)+3100
=>9S=S+3100-1=>\(S=\frac{3^{100}-1}{8}\)
Ta thấy S=1+32+34+..+398=(1+398)+(32+34)+....+(394+396)
Vì 31 có tận cùng là 3; 32 có tận cùng là 9; 33 có tận cùng là 7, 34 có tận cùng là 1 nên 34k+2 có tận cùng là 9; 34k có tận cùng là 1. Vậy thì 1+398 có tận cùng là 0, tương tự 32 + 34 cũng có tận cùng là 0;...
Tóm lại S có tận cùng là 0 hay S chia hết cho 10.
Sửa lại S=1+32+34+..+398=(1+398)+(32+34)+...+(394+396)
Ta có:
S = 1 + 32+34+36+....+398
=> 32. S = 32.( 1 + 32+34+36+....+398)
=> 9.S = 32+34+36+...+398+399
S =1+32+34+36+...+398
=>9.S-S= 399-1
=> 8S=399-1
=> S= ( 399-1 ) : 8