tích 7.x.y chia hết cho 5 và 9. biết x là số nguyên tố nhỏ nhất. Tìm x, y?
2. Chứng minh rằng với mọi số tự nhiên n thì 7n+10 và 5n+7 là hai số nguyên tố cùng nhau
3. Tìm x : a, x chia hết cho 4;7;8 và x nhỏ nhất . B, x chia hết cho 10,15 và x <100
5. Tìm số tự nhiên có 3 chữ số biết số đó khi chia cho 6 thì dư 5, chia cho 8 thì dư 7 chia cho 9 dư 8
2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d
=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d
=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d 1
chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)
Ta có a chia 25 dư 5 => a + 20 chia hết cho 25
a chia 28 dư 8 => a + 20 chia hết cho 28
a chia 35 dư 15 => a + 20 chia hết cho 35
=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}
Mà 119 < (a + 20) < 1020
Nên a + 20 = 700
=> a = 680
Vậy số tự nhiên cần tìm là 680
Tìm x,y , biết :
2xy chia hết cho 5 , 3 và x là số nguyên tố nhỏ nhất
Vì x là số nguyên tố nhỏ nhất => x=2
Số cần tìm có dạng \(\overline{22y}\)
Vì \(\overline{22y}\)chia hết cho 5 => y =(0;5)
Mà số trên chia hết cho 3 => \(2+2+y\)chia hết cho 3
\(=>y=5\)
Vậy số cần tìm là 225
1) Tìm số tự nhiên n khác 1 để 3n +5 chia hết cho n.
2) Tìm số tự nhiên nhỏ nhất x khác 0 biết rằng (x+5) chia hết cho 5 ; (x-12) chia hết cho 6 và (14+x) chia hết cho 7
3) Số nguyên tố đôi một là gì?
Phân tích số 180 ra thừa số nguyên tố thì đc kết quả là: Bài 2: 1) Tìm chữ số x,y biết D =2x5y chia hết cho 2;5 và 9 2) tìm số tự nhiên biết a) A= 1995 + 2005 +x chia hết cho 5 và 23 < x< 35 c) x chia cho 3;4;5 đều dư 1 và 70
Bài 1:
\(180=2^2\cdot3^2\cdot5\)
Bài 2:
1: \(D=\overline{2x5y}\)
D chia hết cho 2 và 5 nên D chia hết cho 10
=>D có tận cùng là 0
=>y=0
=>\(D=\overline{2x50}\)
D chia hết cho 9
=>2+x+5+0 chia hết cho 9
=>x+7 chia hết cho 9
=>x=2
Vậy: D=2250
2:
a: \(A=1995+2005+x\)
\(=4000+x\)
A chia hết cho 5
=>\(x+4000⋮5\)
=>\(x⋮5\)
mà \(23< x< 35\)
nên \(x\in\left\{25;30\right\}\)
c: Bạn ghi lại đề đi bạn
Bài 5: Tìm số tự nhiên a nhỏ nhất sao cho A + 1 chia hết cho 2, a chia hết cho tích của hai số nguyên tố liên tiếp và tích 2023 x a là số chính phương
Cứu mik với
Để tìm số tự nhiên a nhỏ nhất thỏa mãn các điều kiện trên, chúng ta có thể thử từng giá trị của a cho đến khi tìm được số a thỏa mãn. Tuy nhiên, để giải quyết bài toán này một cách nhanh chóng, chúng ta có thể sử dụng phương pháp phân tích số học.
Theo yêu cầu của bài toán, ta có:
A + 1 chia hết cho 2: Điều này có nghĩa là A là số lẻ. a chia hết cho tích của hai số nguyên tố liên tiếp: Điều này có nghĩa là a chia hết cho 2 hoặc a chia hết cho 3. Tích 2023 x a là số chính phương: Điều này có nghĩa là 2023 x a là một số mà căn bậc hai của nó là một số nguyên.Với các điều kiện trên, chúng ta có thể thử từng giá trị của a để tìm số a thỏa mãn. Tuy nhiên, để giải quyết bài toán này một cách nhanh chóng, chúng ta có thể sử dụng phương pháp phân tích số học.
Ta có thể phân tích số 2023 thành tích của các thừa số nguyên tố như sau: 2023 = 7 x 17 x 17. Vì vậy, để tích 2023 x a là một số chính phương, ta cần a chia hết cho 7 và 17.
Tiếp theo, ta xét điều kiện a chia hết cho 2 hoặc a chia hết cho 3. Ta thử từng giá trị của a để tìm số a thỏa mãn các điều kiện trên.
Từ các phân tích trên, ta có thể thử các giá trị a như sau:
a = 7 x 17 = 119: a chia hết cho 7 và 17, và tích 2023 x a = 2023 x 119 = 240737 chính phương. a = 2 x 7 x 17 = 238: a chia hết cho 2, 7 và 17, và tích 2023 x a = 2023 x 238 = 482074 chính phương.Vậy, số tự nhiên a nhỏ nhất thỏa mãn các điều kiện trên là a = 119.
Dài thế bạn
Có đúng ko vậy bài này là đề thi thử mà có 0,5 mà sao khó zậy bạn
bằng 119 nhưng 119 làm gì chia hết cho 2 với 3
1.một số nguyên tố p chia cho 42 có số dư là r là hợp số.tìm r ?
2.chứng minh 10^5000+125 chia hết cho 5 và cho 9 ?
3.tìm số tự nhiên a;b biết a.b=300 và bcnn(a;b)=60
4.5^4.2^4=10^4 đúng hay sai ?
5.tìm x,y biết x.y=8 ?
1.
Ta có p = 42k r = 2.3.7.k + r ( k,r \(\in\)N , 0 < r < 42 )
Vì p là số nguyên tố nên r không chia hết cho 2, 3, 7.
Các hợp số nhỏ hơn 42 và không chia hết cho 2 là 9, 15, 21, 25, 27, 33, 35, 39.
Loại đi các số chia hết cho 3, cho 7, chỉ còn 25.
Vậy r = 25.
2) Ta có : 10^5000 + 125=100...00+125=100...00125
Có tổngcác chữ số là 1+1+2+5=9 chia hết cho 9
Do 10^500 chia hết cho 125 và 125 chia hết cho 125
=> 10^5000+125 chia hết cho 5
Câu 1: a. CMR; 10^2011+8 chia hết cho 72
b. CMR: Hai số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau
Câu2:
a. Tìm số tự nhiên nhỏ nhất sao cho số đó chia cho 3 dư 1 , chia cho 4 dư 2, chia cho 5 dư 3 , chia cho 6 dư 4 và chia hết cho 11
b. Tìm các số tự nhiên x,y thỏa mãn: X^2 +2.x.y=100
c.Tìm số tự nhiên n biết 5n+7 chia hết cho 3n+2
Nhờ mọi người gúp e vs ak, nhanh giùm ak, Thanh you!!!
Câu1: Tìm các số nguyên tố x ; y sao cho x.y chia hết cho x+y
Câu 2 : Tìm 7 số tự nhiên liên tiếp đều là hợp số
1.Tìm số tự nhiên a nhỏ nhất sao cho khi chia a cho 7,cho 13,cho 17có số dư lần lượt là 3,11,14.
2.Tìm 2 số tự nhiên a và b (a<b) biết BCNN (a,b) + ƯCLN (a,b) = 19
3.Tìm tất cả những cặp số tự nhiên (x;y) sao cho 6x +99=20y
4.Tổng của 38 số tự nhiên lẻ liên tiếp bằng 2052.Tìm số nhỏ nhất.
5.Cho A=4 + 42 + ................489
Tìm số dư khi chia A cho 85
6.1xy là bội của 9 và là số nguyên tố nhỏ nhất .Tìm x,y
7.Tìm số nguyên tố P sao cho các số sau cũng là số nguyên tố : P+2 và P+10
GIÚP MÌNH VỚI , BIẾT LÀM BÀI NÀO THÌ CỨ LÀM ,KHÔNG BIẾT THÌ KHÔNG SAO
AI NHANH NHẤT VÀ ĐÚNG NHẤT MÌNH TICK CHO 2 TICK ! ! ! ! !
1. Ta có: a chia có 7 dư 3 => a - 3 chia hết cho 7
=> 4 (a - 3) chia hết cho 7 => 4a - 12 chia hết cho 7
=> 4a - 12 + 7 chia hết cho 7 => 4a - 5 chia hết cho 7 (1)
a chia cho 13 dư 11 => a - 11 chia hết cho 13
=> 4 (a - 11) chia hết cho 13 => 4a - 44 chia hết cho 13
=> 4a - 44 + 39 chia hết cho 13 => 4a - 5 chia hết cho 13 (2)
a chia cho 17 dư 14 => a - 14 chia hết cho 17
=> 4 ( a - 14) chia hết cho 17 => 4a - 56 chia hết cho 17
=> 4a - 56 + 51 chia hết cho 17 => 4a - 5 chia hết cho 17 (3)
Từ (1), (2) và (3) => 4a - 5 thuộc BC(7;13;17)
Mà a nhỏ nhất => 4a - 5 nhỏ nhất
=> 4a - 5 = BCNN(7;13;17) = 7 . 13 . 17 = 1547
=> 4a = 1552 => a= 388
2. Gọi ƯCLN(a,b) = d
=> a = d . m (ƯCLN(m,n) = 1)
b = d . n
Do a < b => m<n
Vì BCNN(a,b) . ƯCLN(a,b) = a . b
\(\Rightarrow BCNN\left(a,b\right)=\frac{a\cdot b}{ƯCLN\left(a,b\right)}=\frac{d\cdot m\cdot d\cdot n}{d}=m\cdot n\cdot d\)
Vì BCNN(a,b) + ƯCLN(a,b) = 19
=> m . n . d + d = 19
=> d . (m . n + 1) = 19
=> m . n + 1 thuộc Ư(19); \(m\cdot n+1\ge2\)
Ta có bảng sau:
Vậy (a,b) = (2;9) ; (1 ; 18)
3.