Chứng minh các phân số sau là phân số tối giản với n thuộc N*
5n+1/6n+1
Chứng minh các phân số sau là phân số tối giản với n thuộc N*
5n+1/6n+1
Giả sử ƯCLN của (5n+1) và (6n+1) là d, ta cần chứng minh d = 1.
Thật vậy: Do d là ƯCLN của (5n+1) và (6n+1) nên \(\hept{\begin{cases}5n+1⋮d\\6n+1⋮d\end{cases}\Rightarrow6\left(5n+1\right)-5\left(6n+1\right)⋮d}\)
\(\Rightarrow1⋮d\Rightarrow d=1.\)
Vậy \(\frac{5n+1}{6n+1}\) là phân số tối giản.
\(\frac{5n+1}{6n+1}\)là phân số tối giản vì
\(\frac{5n+1}{6n+1}=\frac{5}{6}+\frac{n+1}{n+1}=\frac{5}{6}+1\)
Mà 5/6 là phân số tối giản nên 5n+1/6n+1 tối giản
chứng minh với n thuộc N* các phân số sau là phân số tối giản 4n+1/6n+1
Bạn nhân lên rồi tính ra ƯCLN của chúng bằng 1
Chứng minh rằng với n thuộc N* các phân số sau là phân số tối giản
a. 3n-2/4n-3
b. 4n+1/6n+1
a; Gọi UCLN(3n-2; 4n-3)= d (d thuộc N sao)
=> 4n-3-(3n-2) chia hết cho d <=> 1 chia hết cho d=> d=1 => UCLN của 3n-2 và 4n-3 là 1
=> 3n-2/4n-3 là phân số tối giản
b tương tự (nhân 6 vs tử, nhân 4 vs mẫu rồi trừ)
a) Gọi d là ƯCLN(3n - 2, 4n - 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}}\)
\(\Rightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(3n-2,4n-3\right)=1\)
\(\Rightarrow\frac{3n-2}{4n-3}\) là phân số tối giản.
b) Gọi d là ƯCLN(4n + 1, 6n + 1), d ∈ N*
\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+3⋮d\\12n+2⋮d\end{cases}}}\)
\(\Rightarrow\left(12n+3\right)-\left(12n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(4n+1,6n+1\right)=1\)
\(\Rightarrow\frac{4n+1}{6n+1}\) là phân số tối giản.
chứng minh n thuộc N* phân số sau là phân số tối giản 4n+1/6n+1
Gọi ƯCLN(4n+1;6n+1)=d
=> 4n+1 chia hết cho d
6n+1 chia hết cho d
=> 3(4n+1) chia hết cho d
2(6n+1) chia hết cho d
=> 12n+3 chia hết cho d
12n+2 chia hết cho d
=> (12n+3)-(12n+2) chia hết cho d
=> 1 chia hết cho d
=> d=1
Vậy 4n+1/6n+1 là phân số tối giản
Chúc bạn học tốt :)) vananh nguyendao
chứng minh phân số 2n+1 phần 5n+2 là 1 phân số tối giản với n thuộc n
Cho phân số B= 4n+1/6n+1 với n thuộc N* . Chứng minh B là phân số tối giản
b)Gọi U7CLN(4n+1;6n+1)=b
ta có : 4n+1 chia hết cho b ; 6n+1 chia hết cho b
suy ra : 3(4n+1) chia hết cho b : 2(6n+1) chia hết cho b
suy ra : [3(4n+1)-2(6n+1)] chia hết cho b
[(12n+3)-(12n+2)] chia hết cho b
12n+3-12n-2 chia hết cho b
suy ra : 1 chia hết cho b nên b=1
suy ra ƯCLN(4n+1;6n+1)=1
suy ra : 4n+1/6n+1 là phân số tối giản
Chứng minh phân số sau là phân số tối giản với mọi só tự nhiên n \(\frac{5n+1}{6n+1}\) ;;;\(\frac{4n+8}{2n+3}\)
gọi d là ƯCLN(5n+1;6n+1)
=>5n+1 chia hết cho d =>6(5n+1)chia hết cho d=>30n+6 chia hết cho d
=>6n+1 chia hết cho d =>5(6n+1)chia hết cho d=>30n+5 chia hết cho d
=>(30n+6)-(30n+5)chia hết cho d
=> 1 chia hết cho d
=> d= 1
=>5n+1 và 6n+1 là hai snt cùng nhau
Vậy phân số 5n+1/6n+1 là phân số tối giản
Chứng minh các phân số sau tối giản : a ) n/2n+1 b ) 2n+3/4n+8 c ) 3n+2/5n+3 d ) 2n+1/6n+5
a) \(\frac{n}{2n+1}\)
Gọi \(d=ƯCLN\left(n;2n+1\right)\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}n⋮d\\2n+1⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2n⋮d\\2n+1⋮d\end{cases}}\)
\(\Rightarrow\left(2n+1\right)-2n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n;2n+1\right)=1\)
\(\Rightarrow\)Phân số \(\frac{n}{2n+1}\)là phân số tối giản
b) \(\frac{2n+3}{4n+8}\)
Gọi \(d=ƯCLN\left(2n+3;4n+8\right)\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
Vì \(2n+3=\left(2n+2\right)+1=2\left(n+1\right)+1\)(không chia hết cho 2)
\(\Rightarrow d\ne2\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3;4n+8\right)=1\)
\(\Rightarrow\)Phân số \(\frac{2n+3}{4n+8}\)là phân số tối giản
c) \(\frac{3n+2}{5n+3}\)
Gọi \(d=ƯCLN\left(3n+2;5n+3\right)\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}}\)
\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(3n+2;5n+3\right)=1\)
\(\Rightarrow\)Phân số \(\frac{3n+2}{5n+3}\)là phân số tối giản
bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản
A=2n+1/2n+2
B=2n+3/3n+5
Bài 2:
a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản
b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản
giúp mk với
mk sẽ tick cho!!
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
các bn giải hộ mk bài 2 ik
thật sự mk đang rất cần nó!!!