Tìm ƯCLN(4n+3,5n+1) với n thuộc N.Biết hai số này không nguyên tố cùng nhau
cho 4n+3 và 5n+1 là hai số không nguyên tố cùng nhau tìm ƯCLN (4n+3,5n+1)
Gọi ƯCLN(4n+3,5n+1)=d(d\(\inℕ^∗\))
\(\Rightarrow\)4n+3\(⋮\)d
5n+1\(⋮\)d
\(\Rightarrow\)5.(4n+3)\(⋮\)d
4.(5n+1)\(⋮\)d
\(\Rightarrow\)20n+15\(⋮\)d
20n+4\(⋮\)d
\(\Rightarrow\)(20n+15-20n-4)\(⋮\)d
\(\Rightarrow\)11\(⋮\)d
Do đó d \(\in\)Ư(11)={1;11}
Mà đầu bài cho là (4n+3,5n+1)\(\ne\)1
\(\Rightarrow\)d=11
Vậy ƯCLN(4n+3,5n+1)=11
Biết rằng 4n+3 và 5n+2 là hai số không nguyên tố cùng nhau .Tìm ƯCLN( 4n+3,5n+2)
Gọi ƯCNL(4n+3 ; 5n + 2) = d
Ta có : 4n + 3 chia hết cho d => 5(4n + 3) chia hết cho d
5n + 2 chia hết cho d => 4(5n + 2) chia hết cho d
=> 5(4n + 3) - 4(5n + 2) chia hết cho d
=> (20n + 15) - (20n + 8) chia hết cho d
=> 7 chia hết cho d => 4n + 3 và 5n + 2 ko nguyên tố cùng nhau
=> d ∈ Ư(7)
=> d = 7
=> ƯCLN(4n+3 ; 5n+2) = 7
Đặt ƯCLN( 4n + 3; 5n + 2) = d
=> 4n + 3 chia hết cho d
=> 5n + 2 chia hết cho d
<=> 20n + 15 - 20n - 8 = 7 chia hết cho d hay d\(\in\)Ư(7) = {1;7)
Vì: 4n + 3 và 5n + 2 là 2 số không nguyên tố cùng nhau nên chọn d = 7
Vậy: ƯCLN(4n + 3; 5n + 2) = 7
Đặt ƯCLN(4n+3,5n+2)=d.Suy ra 4n+3 chia hết cho d,5n+2 chia hết cho d
Suy ra 5(4n+3) chia hết cho d,4(5n+2) chia hết cho d
Suy ra 20n+15 chia hết cho d,20n+8 chia hết cho d
Nên 20n+15-20n-12 chia hết cho d;suy ra 7 chia hết cho d
Mà d lớn nhất nên d=7
Vậy UCLN(4n+3,5n+2)=7
Biết rằng 4n+3 và 5n+2 là hai số không nguên tố cùng nhau. Tìm ƯCLN(4n+3,5n+2)
Gọi d= ƯCLN(4n+3, 5n+2) với d#1
=>4n+3 chia hết cho d =>20n+15 chia hết cho d => 7 chia hết cho d => d=7
5n+2 chia hết cho d 20n + 8 chia hết cho d
Vậy ...
gọi ước của 4n+3 và 5n+2 là d
=> 5n+2-4x-3 chia hết cho d
n-1 chia hết cho d.
n-1 là wcln của 4n+3,5n+2
chị trình bày còn lủng củng, em cứ tham khảo rồi trình bày
Biết rằng 4n + 3 và 5n+ 2 là 2 số nguyên tố cùng nhau
Tìm ƯCLN(4n+3,5n+2)
Cho a và b là hai số không nguyên tố cùng nhau : a=4n+3 ; b=5n +1(n thuộc số tự nhiên) tìm ƯCLN(a,b)
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
bạn ơi bây giờ mình lấy ví dụ nhé nếu n=1 thì 4n+3 không chia hết cho 11 nha
ƯCLN của hai số tự nhiên không nguyên tố cùng nhau : 4n +3; b=5n+1(n là số tự nhiên) .Tìm ƯCLN (a,b)
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Chúc bạn học tốt
Đề học sinh giỏi cho các bồ nha
Bài 1: 1) Chứng minh rằng hai số tự nhiên liên tiếp nguyên tố cùng nhau.
2) Tìm hai số tự nhiên biết rằng tổng của chúng là 168, ƯCLN của chúng bằng 12.
3) Tìm hai số tự nhiên biết hiệu của chúng là 168, ƯCLN của chúng bằng 56, các số đó trong khoảng từ 600 đến 800.
4) Chứng minh rằng: 3n + 1 và 4n + 1 (n N) là 2 nguyên tố cùng nhau.
5) Biết rằng 4n + 3 và 5n + 2 là hai số không nguyên tố cùng nhau. Tìm ƯCLN (4n + 3, 5n + 2)
mk cx hok bồi nek
sao thấy đề bồi này nó cứ dễ sao ấy
choa,b là 2 số tự nhiên không nguyên tố cùng nhau. tìm ƯCLN(a,b)biết :a=4n+3; b=5k+1 (n,k thuộc N)
cho a ,b là 2 số tự nhiên không nguyên tố cùng nhau
a= 4n+3 , b= 5n+1 ( n thuộc N )
tìm ƯCLN(a,b)
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Chúc bạn học tốt