CMR : n ( n + 1 ) là một số chẵn
CMR : Nếu bình phương của một số tự nhiên n là một số chẵn thì n cũng là một số chẵn.
nếu n ko là số chẵn => n \(\ne2k\left(k\exists\right)N\)=> n^2\(^{\left(2k\right)^2=>}kolàsốchẵn\)
CMR : Với mọi số nguyên n thì (n+4) . (n+7) luôn là một số chẵn.
CMR : với mọi n thuộc Z, thì (n+4)(n+7) là một số chẵn
Xét n=2k(kEZ)
thì (n+4)(n+7)=(2k+4)(2k+7)=2k(2k+7)+4(2k+7)=4k2+14k+8k+28=4k2+22k+28(chia hết cho 2 => là số chẵn)
Xét n=2k+1(kEZ)
thì (n+4)(n+7)=(2k+1+4)(2n+1+7)=(2k+5)(2k+8)=2k(2k+8)+5(2k+8)=4k2+16k+10k+40=4k2+26k+40(chia hết cho 2=> là số chẵn)
Vậy với mọi nEZ thì (n+4)(n+7) là số chẵn
*Xét n chẵn=>n+4 chẵn=>n+4 chia hết cho 2
=>(n+4).(n+7) chia hết cho 2
*Xét n lẻ=>n+7 chẵn=>n+7 chia hết cho 2
=>(n+4).(n+7) chia hết cho 2
Vậy (n+4).(n+7) chia hết cho 2 với mọi n thuộc Z
CMR: nếu m,n là số tự nhiên thì
A = ( 5m +n + 1) ( 3m - n + 4) là số chẵn
cmr:6^n-1 chia hết cho 7 với n là số chẵn
CMR: với n chẵn thì giá trị của biểu thức A = n^3/24 + n^3/8 + n/12 là một số nguyên
vs n là số nguyên dương chẵn. CMR: 20^n+16^n+3^n-1 chia hết cho 323
CMR:
a)tích của 2 số tự nhiên liên tiếp bao giờ cũng chẵn
b)n.(n+5) là 1 số chẵn với mọi số tự nhiên
a, 2 số tự nhiên liên tiếp thì 1 trong 2 số luôn là số chẵn . Vì khi số chẵn nhân với số lẻ là số chẵn gấp lên nhiều lần nên sẽ là số chẵn (Vì số chẵn khi cộng với nhiều lần chính nó vẫn ra là số chẵn).
b , Tương tự như a khi số lẻ nhân với số chẵn vẫn ra số chẵn . Nếu n là số lẻ thì n+5 là số chẵn mà số lẻ nhân với số chẵn ra số chẵn nên n . ( n+5 ) là số chẵn . Nếu n là số chẵn thì n vẫn là số chẵn mà số lẻ nhân với số chẵn nên n . (n+5) là số chẵn .
Vậy mọi trường hợp n. ( n+5 ) với n là số tự nhiên đều ra số chẵn .
Bài 1:CMR với mọi q,p là số tự nhiên, thì:
a,105p+30q chia hết cho 5
b,105p+5q+1 chia cho 5 dư 1
Bài 2: CMR: (n2+n+1) ko chia hết cho 5 (n là số tự nhiên)
Bài 3:CMR trong hai số chẵn liên tiếp có một số chia hết cho 4.