A=1/1.2+1/3.4+...+1/2005.2006 và B=1/1004.2006+1/1005.2006+...+1/2006.1004
CMR A/B thuộc Z
Đặt A=1/1.2+1/3.4+...+1/2005.2006,B=1/1004.2006+1/1005.2006+...+1/2006.1004 Chứng minh rằng A/B thuộc Z
\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\);\(B=\frac{1}{1004.2006}+\frac{1}{1005.2006}+...+\frac{1}{2006.1004}\)
Chứng minh rằng \(\frac{A}{B}\)thuộc Z
Cho A=\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)
B=\(\frac{1}{1004.2006}+\frac{1}{1005.2006}+\frac{1}{1006.2006}+...+\frac{1}{2006.2006}\)
Tính A chia B
bài 1 :
A = 1/ 1.2 + 1/3.4 + 1/5.6 + .........+ 1/ 2005 . 2006
B = 1/ 1004.2006 + 1/ 1005.2006 + ......+ 1/2006.1004
CMR: A/B thuộc Z ( số nguyên )
Đặt A=\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2005.2006}\)
B=\(\frac{1}{1004.2006}+\frac{1}{1005.2006}+...+\frac{1}{2006.1004}\)
Chứng tỏ rằng \(\frac{A}{B}\in Z\)
Ai làm được nhanh và đúng tớ tick đúng nhé
A=1/1.2+1/3.4+...+1/2005.2006
B=1/1004.2006+1/1005.12005+...+1/2006.1004
Chung minh A/B la so nguyen
1;Tính:
A=22+42+62+82+...+1002.
B=13+23+33+43+...+1003.
2;Cho A=\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2005.2006}\)
B=\(\frac{1}{1004.2006}+\frac{1}{1005.2006}+...+\frac{1}{2006.2006}\)
Tính A : B
hfghfghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{1004.2006}\)
\(B=\frac{1}{1004.2006}+\frac{1}{1005.2006}+...+\frac{1}{2006.1004}\)
Tính \(\frac{A}{B}\)
Tìm x biết
x. (1/1.2 + 1/3.4+ 1/5.6+ ....+ 1/2005.2006) = 1/1004.2006+1/1005.2005+1/1006.2004+ .....+ 1/2006.1004