Cho x/2017=ý/2018=z/2019
Chứng minh 4(x-y)(y-z)=(z-x)2
Cho 3 số x,y,z thỏa mãn : x/2016 = y/2017 = z/2018
a CMR : (x-z)^2 = 8(x-y) (y-z)
b Cho biết x/24 + y/4 = z/2018 . Tính x,y,z ?
Tìm giá trị nhỏ nhất của biểu thức A = /x+1/ + /x-2017/ với x là số nguyên
1)cho 3 số x, y,z thỏa mãn điều kiện x+y+z=2018 và x^3+y^3+z^3=2018^3. Cmr (x+y+z)^3=x^2017+y^2017+z^2017
2)
tìm các cặp số nguyên (x y) biết x^2-4xy+5y^2-16=0
3)Cho 3 số a,b,c thỏa mãn a+b+c=0 và a^2+b^2+c^2=2018
4)tính giả trị biểu thức A=a^4+b^4+c^4
Cho 3 số x,y,z thỏa mãn x/2017=y/2018=z/2019 .CM : 4(x-y)(y-z)=(z-x)2
Đặt x/2017=y/2018=z/2019=k => x=2017k,y=2018k,z=2019k
Ta có: 4(x-y)(y-z)=4(2017k-2018k)(2018k-2019k)=4(-k)(-k)=4k2 (1)
(z-x)2 = (2019k-2017k)2 = (2k)2 = 4k2 (2)
Từ (1) và (2) => đpcm
1.cho x thuộc Z, chứng minh rằng x^200+x^100+1 chia het cho x^4+x^2+1
2.tìm các số tự nhiênx,y,z thỏa mãn phương trình:2016^x+2017^y=2018^z
1)Cho các số thực \(x_1,x_2,x_3\)và \(y_1,y_2,y_3\)thỏa mãn \(x_1\le x_2\le x_3,y_1\le y_2\le y_3\).Chứng minh rằng \(\left(x_1+x_2+x_3\right)\left(y_1+y_2+y_3\right)\le3\left(x_1y_1+x_2y_2+x_3y_3\right)\)
2)Với các số thực x,y,z tùy ý thỏa mãn \(1< x\le y\le z\).Chứng minh rằng:
\(\frac{x^{2017}+y^{2017}+z^{2017}}{x^{2018}+y^{2018}+z^{2018}}\le\frac{3}{x+y+z}\)
Một cửa hàng ngày thứ nhất bán 180 tạ gạo, ngày thứ hai bán 270 tạ gạo , ngày thứ ba bán kém hơn ngày thứ hai một nửa .Hỏi trung bình mỗi ngày cửa hàng bán được bao nhiêu tạ gạo ?
1) Xét hiệu :
\(\left(x_1+x_2+x_3\right)\left(y_1+y_2+y_3\right)-3\left(x_1y_1+x_2y_2+x_3y_3\right).\)
\(=x_1\left(y_1+y_2+y_3\right)-3x_1y_1+x_2\left(y_1+y_2+y_3\right)-3x_2y_2+x_3\left(y_1+y_2+y_3\right)-3x_3y_3.\)
\(=x_1\left(y_2+y_3-2y_1\right)+x_2\left(y_1+y_3-2y_2\right)+x_3\left(y_1+y_2-2y_3\right)\)
\(=x_1\left[\left(y_2-y_1\right)-\left(y_1-y_3\right)\right]+x_2\left[\left(y_3-y_2\right)-\left(y_2-y_1\right)\right]+x_3\left[\left(y_1-y_3\right)-\left(y_3-y_2\right)\right]\)
\(=\left(y_2-y_1\right)\left(x_1-x_2\right)+\left(y_1-y_3\right)\left(x_3-x_1\right)+\left(y_3-y_2\right)\left(x_2-x_3\right)\le0\)
Vì \(x_1\le x_2\le x_3;y_1\le y_2\le y_3\)
Tìm x thuộc z
|x-2|=4-x
Tìm x,y thuộc Z
a |x-1|+|y+z|=0
b |2017-x|+|y-x+2018|=0
c|x+2017|mũ 2017+|x-y+2018|mũ 2018 =0
Cảm ơn các bạn
Bài 1:
|x-2|=4-x
ĐK: \(4-x\ge0\Leftrightarrow x\le4\)
Ta có: \(\orbr{\begin{cases}x-2=4-x\\x-2=x-4\end{cases}\Rightarrow\orbr{\begin{cases}2x=6\\0=2\left(loại\right)\end{cases}\Rightarrow}}x=3\left(tm\right)\)
Vậy x = 3
Bài 2:
a, sao có z
b, Vì \(\hept{\begin{cases}\left|2017-x\right|\ge0\\\left|y-x+2018\right|\ge0\end{cases}\Rightarrow\left|2017-x\right|+\left|y-x+2018\right|\ge0}\)
Mà |2017-x|+|y-x+2018|=0
\(\Rightarrow\hept{\begin{cases}\left|2017-x\right|=0\\\left|y-x+2018\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2017\\y-2017+2018=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2017\\y=1\end{cases}}}\)
Vậy x=2017,y=1
c, giống b
Bài 2 cũng có z bạn ạ Làm luôn hộ mình câu b
b) ta thấy /2017-x/>=0
/y-x+2018/>= 0
=> /2017-x/+/y-x+2018/>=0
dấu = xảy ra khi 2017-x=0 => x=2017
và y-x+2018=0 => y= 1
vậy (x;y)=(2017;1)
cho ba số x,y,z thỏa mãn \(\frac{x}{2017}=\frac{y}{2018}=\frac{z}{2019}\)
Chứng minh : 4.(x-y)(y-z)=\(\left(z-x\right)^2\)
giúp mình vs
xin loi , may tinh minh hong unikey
Dat \(\frac{x}{2017}=\frac{y}{2018}=\frac{z}{2019}=k\)
Suy ra \(x=2017k;y=2018k;z=2019k\)
Khi đó 4.(x-y).(y-z) = \(4.\left(2017k-2018k\right).\left(2018k-2019k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)
\(\left(z-x\right)^2=\left(2019k-2017k\right)^2=\left(2k\right)^2=4k^2\)
Nen \(4.\left(x-y\right).\left(y-z\right)=\left(z-x\right)^2\)
cho 3 số x,y,z thỏa \(\dfrac{x}{2017}=\dfrac{y}{2018}=\dfrac{z}{2019}\)
CM: 4(x-y)(y-z)=(z-x)^2
\(\dfrac{x}{2017}=\dfrac{y}{2018}=\dfrac{z}{2019}=k\\ \Rightarrow\left\{{}\begin{matrix}x=2017k\\y=2018k\\z=2019k\end{matrix}\right.\)
\(4\left(x-y\right)\left(y-z\right)=4\left(2017k-2018k\right)\left(2018k-2019k\right)=4\left(-k\right)\left(-k\right)=4k^2=\left(2k\right)^2=\left(2019k-2017k\right)^2=\left(z-x\right)^2\left(ĐPCM\right)\)
Cho các số x,y,z thỏa mãn : x^2+y^2+z^2=xy+yz+zx và x^2018 +y^2018+z^2018=3. Tính giá trị của biểu thức P=x^28+y^57+z^2017