Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh hiếu anh
Xem chi tiết
Nguyễn Đức Minh
10 tháng 5 2022 lúc 14:09

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Đào Xuân Sơn
Xem chi tiết
History6
2 tháng 1 2017 lúc 21:32

a, 1 hoặc 5

nguyen tran thai hang
2 tháng 1 2017 lúc 21:34

a) vi n chia het cho n nen n+5 chia het cho n khi 5 chia het cho n

do do n thuoc U(5)={1;5}

vay n=1 hoac n=5

xin loi nhe tu tu roi minh giai tiep nhe

Trần Nguyễn Việt Hoàng
Xem chi tiết
Anh Alay
30 tháng 7 2018 lúc 15:11

a, Để 7 chia hết cho n - 3 thì n -3 \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) ĐKXĐ    \(n\ne3\)

+, Nếu n - 3 = -1 thì n = 2

+' Nếu n - 3 = 1 thì n =  4 

+, Nếu n - 3 = -7 thì n = -4                                                                                                                                                                            +, Nếu n - 3 = 7 thì n = 10

Vậy n \(\in\left\{2;4;-4;10\right\}\)

b,Để n -4 chia hết cho n + 2 thì n + 2 \(\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)ĐKXĐ \(x\ne-2\)

+, Nếu n + 2 = -1 thì n = -1

+, Nếu n + 2 = 1 thì n = -1

+, Nếu n + 2= 2 thì n = 0

+, Nếu n + 2 = -2  thì n = -4

+, Nếu n + 2 = 3 thì n = 1

+, Nếu n + 2 = -3 thì n = -5

+, Nếu n + 2= 6 thì n = 4

+, Nếu n + 2 = -6 thì n = -8

Vậy cx như câu a nhá 

c, Để 2n-1 chia hết cho n+ 1 thì n\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)ĐKXĐ \(x\ne1\)

Bạn làm tương tự như 2 câu trên nhá

d,

 Để 3n+ 2chia hết cho n-1  thì n\(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)ĐKXĐ \(x\ne1\)

Rồi lm tương tự 

Chúc bạn làm tốt 

Ngô Lê Thanh Thủy
Xem chi tiết
Cô bé chăm học
Xem chi tiết
Quang Trần Minh
Xem chi tiết
Văn Đạt Lê
30 tháng 10 2022 lúc 15:17

ko bt lm

 

Hakai Nguyen
Xem chi tiết
Thiên Hàn
28 tháng 8 2018 lúc 8:21

a) Ta có:

\(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

\(-5n⋮5\) với n thuộc Z

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z

b) Ta có:

\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n\)

\(=5\left(n^2+n\right)\)

\(5\left(n^2+n\right)⋮5\)

\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)

c) Ta có:

\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)

\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)

\(2\left(xy+1\right)y^{2003}⋮2\)

\(2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)

Phạm Minh Anh
Xem chi tiết
๖²⁴ʱんuリ イú❄✎﹏
31 tháng 10 2019 lúc 16:51

phần c 

\(n-7⋮2n+3\)

\(2\left(n-7\right)-\left(2n+3\right)⋮2n+3\)

\(2n-4-2n-3⋮2n+3\)

\(-7⋮2n+3\)

\(\Rightarrow2n+3\inƯ\left(-7\right)=\left\{\pm1;\pm7\right\}\)

Ta có bảng xét :

2n+3-11-77
2n-4-2-104
n-11-52
Khách vãng lai đã xóa
Kutevip
Xem chi tiết