CHỨNG MINH RẰNG:nếu P là số nguyên tố ,P>3và P+2 là số nguyên tố thì P+ (P+2) CHIA HẾT CHO 12
Biết p là số nguyên tố lớn hơn 3và p + 16 là số nguyên tố. Chứng minh p + 2021 chia hết cho 6
vì p + 16 là SNT => p là số lẻ => p = 2k + 1
vì p là SNT lớn hơn 3 thì p = 3k + 1 ; 3k + 2
nếu p = 3k + 1 mà p là số lẻ => 3k là chẵn
=> p + 2021 = 6k + 2022 chia hết cho 6
nếu p = 3k + 2 => p + 16 = 3k + 2 + 16 = 3k + 18 chia hết cho 3
kết luận : p = 3k + 1
chứng minh rằng:Nếu 3 số tự nhiên m, m+k,m+2k đều là các số nguyên tố lớn hơn 3,thì k chia hết cho 6
CMR: nếu 3 số tự nhiên m, m+k ,m+2k đều là các số nguyên tố lớn hơn 3, thì k chia hết cho 6
1)cho ba số nguyên tố lớn hơn 3 trong đó số sau lớn hơn số trước là d dơn vị chứng minh rằng d chia hết cho 6
2)hai số nguyên tố gọi là sinh đôi nếu chúng là hai số nguyên tố lẻ lien tiếp chứng minh rằng một số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6
3)cho p là số nguyên tố lớn hơn 3 biết p+2 cũng là số nguyên tố chứng minh rằng p+1 chia hết cho 6
1)cho ba số nguyên tố lớn hơn 3 trong đó số sau lớn hơn số trước là d dơn vị chứng minh rằng d chia hết cho 6
2)hai số nguyên tố gọi là sinh đôi nếu chúng là hai số nguyên tố lẻ lien tiếp chứng minh rằng một số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6
3)cho p là số nguyên tố lớn hơn 3 biết p+2 cũng là số nguyên tố chứng minh rằng p+1 chia hết cho 6
3) CM:p+1 chia hết cho 2
vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.
Vậy p+1 chia hết cho 2
CM:p+1 chia hết cho 3
Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)
Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3
Vậy p+1 chia hết cho 3
Mà ƯCLN(2,3) là 1
Vậy p+1 chia hết cho 2x3 là 6
Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.
cho p là số nguyên tố >3 và p+2 là số nguyên tố . chứng minh rằng p+p+2 chia hết cho 12
Tìm số nguyên tố p sao cho p; p+4;p+12 cũng là số nguyên tố
Cho p và \(p^2\)+2 là số nguyên tố . Chứng minh \(^{p^3}\)+2 cũng là số nguyên tố
Cho p là số nguyên tố lớn hơn 3. Chứng minh (p+5).(p+7) chia hết cho 24
P là số nguyên tố và p>3 => p+5, p+7 là sô chẵn đặt p+5=2k=> p+7=2k+2=>(p+5)(p+7)= 2k(2k+2)= 2k2(k+1)= 4k(k+1) chia hết cho 8
( vì k(k+1) chia hết cho 2 với mọi k thuộc n)
P là số nguyên tố lớn hơn 3 nên p có dạng 3n+1 hoặc 3n+2
. Xét P= 3n+1=> (p+5)(p+7)= (3n+6)(3n+8) chia hết cho 3 với mọi n thuộc N
. xét p=3n+2=> (p+5)(p+7)= (3n+7)(3n+9) chia hét cho 3 với mọi n thuộc N
(p+5)(p+7) chia hết cho 8 và 3=> (p+5)(p+7) chia hết cho 24
cho p là số nguyên tố lớn hơn 3.chứng minh (p+5)(p+7) chia hết cho 24
các bạn giải hộ mình vs
bài 1:cho p,p+4 là số nguyên tố(p>3)
chứng minh p+8 là hợp số
bài 2:cho p,8p-1 là số nguyên tố
chứng minh 8p+1 là hợp số
bài 3:chứng minh rằng nếu p là số nguyên tố (p>3)
thì (p-1).(p+1) chia hết cho 24
bài 4:cho p là số nguyên tố(p>3),p+2 là số nguyên tố
chứng minh p+1 chia hết cho 6
P=3+2^2(2+1)+2^4(2+1)+2^6(2+1)
=3(1+2^2+2^4+2^6)
=>đpcm
1.chứng minh rằng (p-1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố
2. cho 2^m-1 là số nguyên tố. chứng minh m cũng là số nguyên tố
1.chứng minh rằng (p-1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố
2. cho 2^m-1 là số nguyên tố. chứng minh m cũng là số nguyên tố