Tính : A=2+2^1+2^2+2^3+...+2^100
Tính tổng: A=2^2 + 3^2 + 4^2 + ... + 100^2
A=2^2 + 3^2 + 4^2 + ... + 100^2
A=(2.3.4...100)+(2.3.4...100)+1
A=2(2.3.4....100)+1
A= ...
Tính tiếp, ngang đó mik chịu
Tính tổng: A=2^2 + 3^2 + 4^2 + ... + 100^2
A=2^2 + 3^2 + 4^2 + ... + 100^2
A=(2.3.4...100)+(2.3.4...100)+1
A=2(2.3.4....100)+1
A= ...
Tính tiếp, ngang đó mik chịu
1)Tính nhanh: A=1+3+3^2+3^3+3^4+...+3^100
B= 1+4^2+4^4+4^6+...+4^100
2) Cho biết 1^2+2^3+3^2+4^2+...+10^2= 385
Tính a) S1= 2^2+4^2+...+20^2
. b) S2= 100^2+200^2+...1000^2
Bài 1:
A = 1 + 3 + 32 + ... + 3100
=> 3A = 3 + 32 + ... + 3101
=> 2A = 3101 - 1
=> A = \(\frac{3^{101}-1}{2}\)
B = 1 + 42 + 44 + ... + 4100
=> 8B = 42 + 44 + ... + 4102
=> 7B = 4102 - 1
=> B = \(\frac{4^{102}-1}{7}\)
Bài 2:
a) S1 = 22 + 42 + ... + 202
=> S1 = 22(1+22+...+102)
=> S1 = 22.385
=> S1 = 1540
b) S2 = 1002 + 2002 + ... + 10002
=> S2 = 1002(1+22+...+102)
=> S2 = 1002.385
=> S2 = 3850000
Bài 1: Tính A=\(1+2+2^2-2^3+2^4-2^5+......+2^{98}+2^{99}+2^{100}\)\(2^{100}\)
Bài 2: Tính D=\(1-3^2+3^3-3^4+3^5+...-3^{100}+3^{101}\)
Tính tổng:
a) A= 1^2*2 + 2^2 *3 + 3^2*4 +...+ 99^2*100
b) B= 1*2^2 + 2*3^2 + 3*4^2 +...+ 99*100^2
c) C= 1^3 + 2^3 + 3^3 +...+ 99^3
Tính:
A=(1-1/1+2).(1-1/1+2+3).(1-1/1+2+3+4)...(1-1/1+2+3+4+...+2022)
B=1+1/2(1+2)+1/3(1+2+3)+1/100(1+2+3+...+100)
Tính
A=1+1/2(1+2)+1/3(1+2+3)+...+1/100(1+2+3+...+100)
Ta có 1/n(1+2+3+...+n)
Áp dụng công thức 1+2+3+...+n =n (n+1) /2
Nên 1/n(1+2+3+...+n) =1/n[n (n+1)/2]=n (n+1) /2n
=>1+3/2+4/2+...+101/2
=1+[(2+3+4+...+101)/2)-1 (vì mình thêm vào 2/2 nên phải trừ 1)
=5150 :)))))))))
Tính A= \(\dfrac{1}{2}+\dfrac{1}{2}.\left(1+2\right)+\dfrac{1}{3}.\left(1+2+3\right)+...+\dfrac{1}{100}.\left(1+2+3+...+100\right)\)
Áp dụng \(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)
\(\Rightarrow\dfrac{1}{n}\left(1+2+...+n\right)=\dfrac{n\left(n+1\right)}{2n}=\dfrac{n+1}{2}\)
Vậy:
\(A=\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{101}{2}=\dfrac{1+2+3+...+100}{2}-1\)
\(=\dfrac{100.101}{2}-1=5049\)
Tính tổng:
\(A=1+3+3^2+3^3+...+3^{99}+3^{100}\)100
\(B=1-2+2^2-2^3+2^4-...-2^{99}+2^{100}\)
\(A=1+3+3^2+...+3^{100}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)
\(\Rightarrow3A-A=3^{101}-1\)
\(\Rightarrow A=\frac{3^{101}-1}{2}\)
Tính A=1+3/2^3+4/2^4+......+99/2^99+100/2^100