so sánh tổng sau với 1 và 2
\(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\)(a,b,c,d \(\in\)N*)
So sánh tổng sau với 1 và 2:
\(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\)(a,b,c,d \(\in\)N*)
So sánh tổng sau với 1 và 2: \(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\)(a,b,c,d \(\in\)N*)
So sánh tổng sau với 1 và 2
\(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\)(a,b,c,d \(\in\)N*)
Đặt A=a/b+c+d + b/c+d+a +c/d+a+b +d/a+b+c
4+A=a/b+c+d +1 + b/c+d+a +1 + c/d+a+b +1 + d/a+b+c +1
4+A=2a/a+b+c+d + 2b/a+b+c+d + 2c/a+b+c+d +2d/a+b+c+d
4+A=2a+2b+2c+2d/a+b+c+d
4+A=2(a+b+c+d) /a+b+c+d
4+A=2
A=2-4= -2
=) A<1<2
\(\frac{a}{b+c+d}\)+\(\frac{b}{c+d+a}\)+\(\frac{c}{d+a+b}\)+\(\frac{d}{a+b+c}\)
so sánh tổng sau với 1 (a,b,c,d thuộc N*)
1. Cho 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)với b > 0, d > 0. Chứng tỏ rằng nếu \(\frac{a}{b}< \frac{c}{d}\)thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2. Cho \(a,b,n\in Z\)và b > 0, n > 0
Hãy so sánh 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{a+n}{b+n}\)
1.
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2.
Ta có: a(b + n) = ab + an (1)
b(a + n) = ab + bn (2)
Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)
Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)
Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)
Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)
Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)
Cho a, b, c, d, sao cho:\(\frac{a}{b}< \frac{c}{d}\)và a+c=b+d. So sánh \(\frac{a}{b};\frac{c}{d}\)và 1.
So sánh T=\(\frac{a}{b}+\frac{c}{d}\)và X=\(\frac{a+c}{b+d}\)với a,b,c,d thuộc N*
1) So sánh
\(\frac{n+1}{n+2}và\frac{n}{n+3}\)
2)a) Cho \(\frac{a}{b}>\frac{c}{d}\)(b,d khác 0). Chứng minh rằng a x d > b x c
b) Cho a x d > b x c(b,d khác 0).Chứng minh rằng \(\frac{a}{b}>\frac{c}{d}\)
Giúp mình với, mình đang cần gấp
Chứng tỏ:\(2< \frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{d+a}{d+a+b}< 3\left(a,b,c,d\in N\right)\)
bạn gửi câu hỏi trên google đi