cho c khác 0. và ab/a+b = bc/b+c . cmr a/b=b/c
(ab và bc là câc số có hai chữ số)
Cho c khác 0 và : \(\frac{ab}{a+b}=\frac{bc}{b+c}.CMR:\frac{a}{b}=\frac{b}{c}\)
( ab và bc là những số có 2 chữ số )
Từ \(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\Rightarrow\left(10a+b\right).\left(b+c\right)=\left(10b+c\right).\left(a+b\right)\)
\(\Rightarrow10ab+b^2+10ac+bc=10ab+ac+10b^2+bc\)
\(\Rightarrow b^2+10ac=ac+10b^2\)
\(\Rightarrow10ac-ac=10b^2-b^2\)
\(\Rightarrow9ac=9b^2\)
\(\Rightarrow ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c}\left(đpcm\right)\)
\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\)
<=> \(\frac{\overline{ab}}{\overline{bc}}=\frac{a+b}{b+c}\)
<=> \(\frac{a.10+b}{b.10+c}=\frac{a+b}{b+c}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{a.10+b}{b.10+c}=\frac{a+b}{b+c}=\frac{\left(10a+b\right)-\left(a+b\right)}{\left(10b+c\right)-\left(b+c\right)}=\frac{9a}{9b}=\frac{a}{b}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{b+c}=\frac{a}{b}=\frac{\left(a+b\right)-a}{\left(b+c\right)-b}=\frac{b}{c}\)
=> \(\frac{a}{b}=\frac{b}{c}\)
Cho c khác 0 và ab/a+b=bc/b+c. CMR a/b=b/c (ab và bc là những số có hai chữ số)
ab/a+b=bc/b+c
=>10a+b/a+b=10b+c/b+c
=>(10a+b) (b+c) =(10b+c) (a+b)
Sau đó nhân ra là tìm được đfcm.
Quá dễ...!! !
Câu hỏi của Best Friend Forever - Toán lớp 7 - Học toán với OnlineMath
cho các số nguyên a, b, c khác 0 thỏa mãn ab/c + bc/a + là số nguyên. cmr ab/ c và bc/ a cũng là các số nguyên. mik sẽ tik cho bạn làm đúng và chính xác
Ta có : \(\frac{ab}{c}+\frac{bc}{a}\in Z\Leftrightarrow\left(\frac{ab}{c}+\frac{bc}{a}\right).c\in\&Z\left(\frac{ab}{c}+\frac{bc}{a}\right).a\in Z\)
\(\Leftrightarrow\hept{\begin{cases}ab+\frac{bc^2}{a}\in Z\\\frac{a^2b}{c}+bc\in Z\end{cases}}a;b;c\in Z\Leftrightarrow\hept{\begin{cases}\frac{bc^2}{a}\in Z\\\frac{a^2b}{c}\in Z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}bc^2⋮a\\a^2b⋮c\end{cases}\Leftrightarrow a^2b^2c^2⋮ac\Leftrightarrow}b^2⋮ac\Leftrightarrow\hept{\begin{cases}b^2⋮a\\b^2⋮c\end{cases}\Leftrightarrow\hept{\begin{cases}b⋮a\\b⋮c\end{cases}}}\)( nếu a;b;c nguyên tố cùng nhau thì \(b^2\)không \(⋮a;c\))
\(\Rightarrow b=a.k=c.h\left(k;h\in Z\right)\Leftrightarrow\frac{ab}{c}=\frac{a.c.h}{c}=a.h\in Z;\frac{bc}{a}=\frac{a.k.c}{a}=k.c\in Z\)
Vậy \(\frac{ab}{c}+\frac{bc}{a}\in Z\Rightarrow\frac{ab}{c}\in Z;\frac{bc}{a}\in Z\left(đpcm\right).\)
Cho ab ,bc ( c khác 0 ) là các số có hai chữ số thỏa mãn điều kiện ab: a+b =bc: b+c .Chứng minh rằng b^2= ac
1)Cho a,b,c đôi một khác nhau và khác 0 biết: ab(gạch đầu) là số nguyên tố và ab(gạch đầu) /bc(gạch đầu)=b/c. Tìm abc(gạch đầu)
2) Cho tỉ lệ thức ab(gạch đầu)/bc(gạch đầu)= a/c. Chứng minh rằng: abbb...b(gạ ch đầu)(có n chữ số b) /bbb...bbc(gạch đầu)(có n chữ số b) = a/c
cho ab,bc (c khác 0) là các số có 2 chữ số thoả mãn điều kiện ab/a+b=bc/b+c. Chứng minh rằng b^2=ac
\(\frac{ab}{a+b}=\frac{bc}{b+c}\)
<=> \(\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)
<=> \(\frac{9a}{a+b}=\frac{9b}{b+c}\)
<=> \(\frac{a}{a+b}=\frac{b}{b+c}\)
=> a(b + c) = b(a + b)
<=> ab + ac = ba + b2
=> ac = b2 (đpcm)
Cho a, b, c là ba số khác 0 thỏa mãn: ab/a+b=bc/b+c=ca/c+a ( với giả thiết các tỉ số đều có nghĩa) và a+b=c=1 tính giá trị của biểu thức A=abc(a2+b2+c2)/ab+bc+ca
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)
\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=\dfrac{1+1+1}{a+b+c}=\dfrac{3}{a+b+c}=\dfrac{3}{1}=3\)
\(\Rightarrow a=b=c=\dfrac{1}{3}\)
\(\Rightarrow A=\dfrac{a^3\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=a^3=\left(\dfrac{1}{3}\right)^3=\dfrac{1}{27}\)
Bài 1: Choa;b;c là các số khác 0 và a^2= bc; b^2= ab; c^2=ac.Cmr a=b=c
Bài2: Cho a;b;c là các số khác 0 thỏa mãn ab+ac/2=bc+ba/3=ca+cb/4. Chứng tỏ : a/3= b/5=c/15
Cho a,b,c là các chữ số đôi một khác nhau và khác 0. Biết ab [gạch trên đầu] là số nguyên tố; \(\frac{ab}{bc}=\frac{b}{c}\) [ab và bc gạch trên đầu]
Tìm abc [gạch trên đầu]
Áp dụng tính chất của dãy tỉ số bằng nhau:
ab/ac =b/c= ab-b/bc-c =10a/10b
=>b² = a.c
Do ab là nguyên tố nên b lẻ khác 5. Mà b là chữ số.
=> b ∈ 1; 3; 7; 9
Ta xét các chữ số:
- Với b = 1 thì 1² = a.c ⇒ a = c = 1. ( loại vì a; b; c khác nhau )
- Với b = 3 thì 3² = a.c = 9, ta chọn được giá trị a = 1 và c = 9. ( nhận )
- Với b = 7 thì b² = a.c = 49, ta chỉ chọn được cặp giá trị a = c = 7 vì a và c là chữ số. ( loại )
- Với b = 9 thì 9² a.c = 81, ta cũng chỉ chọn được cặp giá trị a = c = 9 vì a và c là chữ số. ( loại )
Vậy abc = 139.