Cho tam giác ABC cân ở Ạ. Đường vuông góc với Ac tại c cắt Ah tại O. Tia Ax nằm trong góc BAC cắt đường tròn tâm O tại M và N. K là chân đường Vuông góc của O trên Ax. Tia Ax cắt BC tại I. CMR: AI.AK=AC2
Tam giác ABC cân tại A, đường cao AH. Đường thẳng vuông góc với AC tại C cắt AH tại O. Tia Ax nằm trong góc BAC cắt đường tròn tâm O bán kính OC tại M và N (AM < AN). Gọi K là chân đường vuông góc của O lên Ax.
a) Chứng minh rằng các điểm A, B, C, O, H thuộc một đường tròn
b) Biết AH = 24 cm và OH = 6 cm. tính chu vi tam giác ABC
c) Tia AH cắt đường tròn (O; OC) tại E và F (AE < AF). Chứng minh rằng AE.FH = AF.EH
d) Gọi G là trọng tâm tam giác CMN. Khi Ax di động trong góc BAC thì G chạy trên đường nào?
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
cho nửa đường tròn (O) đường kính AB, kẻ tiếp tuyến Ax. Qua C nằm trên nửa đường tròn kẻ tiếp tuyến với nửa đường tròn cắt Ax tại M, tiai BC cắt Ax tại M, tia BC cắt Ax tại N
a) Chứng minh OM vuông góc với AC
b) Chứng minh M là trung điểm của AN
c) Kẻ CH vuông góc AB,BM cắt CH ở K. Chứng minh K là trung điểm của CH
a/ Xét tam giác MAO và tam giác MCO có
MA = MC
MO chung
AO = AC
=> tam giác MAO = tam giác MCO
\(\Rightarrow\widehat{AOM}=\widehat{COM}\)
\(\Rightarrow OM\) là phân giác \(\widehat{AOC}\) mà tam giác AOC cân tạo O
\(\Rightarrow OM\) là đường cao của tam giác AOC
\(\Rightarrow\)OM vuông góc với AC
b/ Từ câu a ta suy ra được OM vừa là đường cao vừa là đường trung tuyến
\(\Rightarrow\)OM vuông góc AC
Mà NC vuông góc AC
=> OM // NC (1)
ta lại có AI = IC (2)
Từ (1) và (2) => OM là đường trung bình của tam giác ONC
=> M là trung điểm của AN
c/ Ta thấy rằng CH // AN (vì cùng vuông góc AB)
\(\Rightarrow\frac{CK}{MN}=\frac{BK}{BM}=\frac{KH}{AM}\)
Mà MN = AM nên => CK = KH
Vậy K là trung điểm của CH
Cho A nằm trên đường tròn (O) đường kính BC, phân giác của góc BAC cắt BC tại D và cắt đường tròn (O) tại M, AH là đường cao của tam giác ABC.
a) Cm OM vuông góc BC và MB2= MA.MD
b) Phân giác của góc ABC cắt AH tại E; cắt AM tại I; cắt AC tại F và cắt (O) tại N, cm MA = MB = MC.
c) cm EA.FA = EH.FC
d) Qua I kẻ IP vuông góc AB tại P, IP cắt BC tại K, chứng minh N, K, M thẳng hàng.
Cho A nằm trên đường tròn (O) đường kính BC, phân giác của góc BAC cắt BC tại D và cắt đường tròn (O) tại M, AH là đường cao của tam giác ABC.
a) Chứng minh OM vuông góc BC và MB2= MA.MD
b) Phân giác của góc ABC cắt AH tại E; cắt AM tại I; cắt AC tại F và cắt (O) tại N, cm MA = MB = MC.
c) chứng minh EA.FA = EH.FC
d) Qua I kẻ IP vuông góc AB tại P, IP cắt BC tại K, chứng minh N, K, M thẳng hàng.
Cho nửa đường tròn tâm O đường kính AB và tiếp tuyến Ax (A là tiếp điểm, Ax nằm ở nửa mặt phẳng chứa nửa đường tròn bò là AB). Trên đoạn AB lấy điểm M (M khác A, M khác B), đường thẳng vuông góc với AB tại M cắt nửa đường tròn tâm O tại C, tia BC cắt Ax tại D. Gọi N là trung điểm của AD. Gọi H là giao điểm của ON và AC. Kẻ HE vuông góc với AN (E thuộc AN). Đường tròn đường kính NC cắt EC tại F. Chứng minh NF luôn đi qua 1 điểm cố định khi M di chuyển trên AB.
Cho đường tròn tâm O, đường kính AB=2R, kẻ tiếp tuyến Ax của đường tròn. Từ 1 điểm M trên tia Ax, kẻ tiếp tuyến MC với tiếp điểm C thuộc (O). Qua O kẻ Oy vuông góc AB, Oy cắt BC tại N.
1) Chứng minh OMNB là hình bình hành
2) AN cắt OM tại K, MC cắt ON tại I, MN cắt OC tại E. Chứng minh tam giác MIO cân và 3 điểm K, I và E thẳng hàng
3) Gọi H là trực tâm của tam giác MAC. Chứng minh H thuộc đường tròn cố định khi M chuyển động trên Ax
4) Tìm vị trí điểm M để K thuộc đường tròn (O)
Cho nửa đường tròn tâm O, đường kính AB. Vẽ 2 tiếp tuyến Ax; By của nửa (O). Gọi C là điểm trên nửa (O) sao cho AC > BC. Tiếp tuyến tại C của nửa (O) cắt Ax; By lần lượt tại D; E.
a) Chứng minh: tam giác ABC vuông và AD + BE = ED.
b) Chứng minh: 4 điểm A; D; C; O cùng thuộc 1 đường tròn và góc ADO = góc CAB.
c) DB cắt nửa (O) tại F và cắt AE tại I. Tia CI cắt AB tại K. Chứng minh: IC = IK.
d) Tia AF cắt tia BE tại N, gọi M là trung điểm của BN. Chứng minh: 3 điểm A; C; M thẳng hàng.
Em tham khảo tại link dưới đây nhé.
Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath
Với câu c, khi đã có IK // AD thì vận dụng Ta let ta có ngay \(\frac{IC}{AD}=\frac{IK}{AD}\Rightarrow IC=IK\)
Cho nửa đường tròn (O;R), đường kính AB. Trên nửa đường tròn lấy một điểm C tùy ý. Trên cùng nửa mặt bờ AB chứa nửa đường tròn,vẽ tia Ax vuông góc AB. Tia phân giác của góc CAx cắt nửa đường trong tại I (I khác A) và cắt đường thẳng BC tại D. Đường thẳng BI cắt AC tại H, Ax tại K.
a) Chứng minh: DH//Ax
b) Tứ giác AKDH là hình gì?
c) Tam giác ABD là tam giác gì?