tìm giá trị của n \(\in Z\) để biểu thức : \(A=\frac{5n-7}{n+2}\) nhận giá trị nguyên
Tìm giá trị của \(n\in Z\)để A = \(\frac{5n-7}{n+2}\)nhận giá trị nguyên.
\(\frac{5n-7}{n+2}=\frac{5n+10-10-7}{n+2}=\frac{5n+10-17}{n+2}=\)\(\frac{5n+10}{n+2}+\frac{-17}{n+2}\)
Ư(-17)= {-17;-1;1;17}
\(n+2=-17\) \(n=-19\)
\(n+2=-1\) \(n=-3\)
\(n+2=1\) \(n=-1\)
\(n+2=17\) \(n=15\)
\(\Rightarrow n=\left(-19;-3;-1;15\right)\)
bài 1 :
tìm giá trị n thuộc Z để biểu thức : A = 5n - 7 / n + 2 nhận giá trị nguyên
b , tìm n thuocj Z sao cho :
n^2 + 9n + 7 là B(n-2 )
bài làm :
a, ta có : \(A=\frac{5n-7}{n+2}=\frac{5\left(n+2\right)-17}{n+2}=5-\frac{17}{n+2}\)
để A nhận giá trị nguyên thì : \(5-\frac{17}{n+2}\) là số nguyên \(\Rightarrow\left(n+2\right)\) là Ư(17)
\(\Rightarrow\left(n+2\right)\)lần lượt nhận các giá trị \(\pm1,\pm17\)
ta lần lượt :
với n + 2 = -1 => n = -3với n + 2 = 1 => n = -1với n + 2 = -17 => n = -19với n + 2 = 17 => n = 15vậy ta tìm đc n = -3 ; n = -1 ; n = -19 ; n = 15
Tìm giá trị n thuộc Z để có biểu thức
A= (5n-7):(n+2) Nhân giá trị số nguyên
Để A nguyên thì:
5n - 7 chia hết cho n + 2
=> 5n + 10 - 17 chia hết cho n + 2
=> 5.(n + 2) - 17 chia hết cho n + 2
Mà 5.(n + 2) chia hết cho n + 2
=> 17 chia hết cho n + 2
=> n + 2 thuộc Ư(17) = {-17 ; -1; 1; 17}
=> n thuộc {-19; -3; -1; 15}
Vậy...
Cho 2 biểu thức: \(A=\frac{4x-7}{x-2};B=\frac{3x^2-9x+2}{x-3}\)
a, Tìm x \(\in\)Z để mỗi biểu thức trên nhận giá trị là nguyên
b, Tìm x \(\in\)Z để cả 2 biểu thức trên nhận giá trị nguyên
a)
1, \(A=\frac{4x-7}{x-2}=\frac{4x-8+1}{x-2}=\frac{2\left(x-2\right)+1}{x-2}=2+\frac{1}{x-2}\)
A nguyên <=> \(\frac{1}{x-2}\) nguyên <=> \(1⋮x-2\)
<=>\(x-2\inƯ\left(1\right)=\left\{-1;1\right\}\Leftrightarrow x\in\left\{1;3\right\}\)
2,\(B=\frac{3x^2-9x+2}{x-3}=\frac{3x\left(x-3\right)+2}{x-3}=3x+\frac{2}{x-3}\)
B nguyên <=> \(\frac{2}{x-3}\) nguyên <=> \(2⋮x-3\)
<=>\(x-3\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\Leftrightarrow x\in\left\{1;2;4;5\right\}\)
Vậy .............
b)Kết hợp các giá trị của x ở phần a ta thấy cả 2 biểu thức A và B nguyên khi x=1
bài của trà my sai chỗ
4x-8+1=4*(x-2)+1
tìm n thuộc z để giá trị tuyệt đối của A= 2n^2+5n-3 nhận giá trị là số nguyên tố
Với n thuộc Z
Có: \(A=2n^2+5n-3=2n^2+6n-n-3=2n\left(n+3\right)-\left(n+3\right)=\left(2n-1\right)\left(n+3\right)\)
=> \(\left|A\right|=\left|\left(n+3\right)\left(2n-1\right)\right|\)
Để | A | là số nguyên tố \(n+3=\pm1\)hoặc \(2n-1=\pm1\)
+) Với n + 3 = 1 => n =-2 => | A | = 5 là số nguyên tố => n = - 2 thỏa mãn.
+) Với n + 3 = - 1 => n = - 4 => | A | = 9 không là số nguyên tố => loại
+) Với 2n -1 = 1 => n =1 => |A | = 4 loại
+) Với 2n -1 =-1 => n = 0 => | A | = 3 là số nguyên tố => n = 0 thỏa mãn.
Vậy n=-2 hoặc n =0.
tìm n thuộc z để giá trị tuyệt đối của A= 2n^2+5n-3 nhận giá trị là số nguyên tố
Tìm các giá trị nguyên n để cacs biểu thức sau có giá trị nguyên:
A= \(\frac{5n-7}{n-3}\)
B= \(\frac{12n-5}{2n-1}\)
Ta có: A = \(\frac{5n-7}{n-3}=\frac{5\left(n-3\right)+8}{n-3}=5+\frac{8}{n-3}\)
Để A \(\in\)Z <=> 8 \(⋮\)n - 3 <=> n - 3 \(\in\)Ư(8) = {1; -1; 2; -2; 4; -4; 8; -8}
Lập bảng :
n - 3 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
n | 4 | 2 | 5 | 1 | 7 | -1 | 11 | -5 |
Vậy ...
B = \(\frac{12n-5}{2n-1}=\frac{6\left(2n-1\right)+1}{2n-1}=6+\frac{1}{2n-1}\)
Để B \(\in\)Z <=> 1 \(⋮\)2n - 1 <=> 2n - 1 \(\in\)Ư(1) = {1; -1}
+) 2n - 1 = 1 => 2n = 1 + 1 = 2 => n = 2 : 2 = 1
2n - 1 = -1 => 2n = -1 + 1 = 0 => n = 0 : 2 = 0
Vậy ...
\(A=\frac{5n-7}{n-3}\)Điều kiện : \(n\ne3\)
\(A=\frac{5n-7}{n-3}=\frac{5\left(n-3\right)+8}{n-3}=5+\frac{8}{n-3}\)
Để \(A\in Z\Rightarrow\frac{8}{n-3}\in Z\Rightarrow n-3\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(\Rightarrow n\in\left\{-5;-1;1;2;4;5;7;11\right\}\)
Vậy \(\Rightarrow n\in\left\{-5;-1;1;2;4;5;7;11\right\}\)thì \(A\in Z\)
\(B=\frac{12n-5}{2n-1}\) Điều kiện : \(n\ne\frac{1}{2}\)
\(=\frac{6\left(2n-1\right)+1}{2n-1}=6+\frac{1}{2n-1}\)
Để \(B\in Z\Rightarrow\frac{1}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow n\in\left\{0;1\right\}\)
Vậy \(\Rightarrow n\in\left\{0;1\right\}\)thì \(B\in Z\)
a) Ta có : Để \(A\inℤ\)
\(\Rightarrow5n-7⋮n-3\)
\(\Rightarrow5n-15+8⋮n-3\)
\(\Rightarrow5\left(n-3\right)+8⋮n-3\)
Vì \(5\left(n-3\right)⋮n-3\)
\(\Rightarrow8⋮n-3\)
\(\Rightarrow n-3\inƯ\left(8\right)\)
\(\Rightarrow n-3\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Lập bảng xét các trường hợp :
n - 3 | 1 | - 1 | 2 | - 2 | 4 | - 4 | 8 | -8 |
n | 4 | 2 | 5 | 1 | 7 | - 1 | 11 | - 5 |
Vậy các n thỏa mãn là : 4 ; 2 ; 5 ; 1 ;7 ; - 1 ; 11 ; - 5
b) Để \(B\inℤ\)
\(\Rightarrow12n-5⋮2n-1\)
\(\Rightarrow12n-6+1⋮2n-1\)
\(\Rightarrow6.\left(2n-1\right)+1⋮2n-1\)
Vì \(6.\left(2n-1\right)⋮2n-1\)
\(\Rightarrow1⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(1\right)\)
\(\Rightarrow2n-1\in\left\{1;-1\right\}\)
Lập bảng xét các trường hợp :
\(2n-1\) | \(1\) | \(-1\) |
\(n\) | \(1\) | \(0\) |
Vậy các n thỏa mãn là 1 ; 0
a) tìm x nguyên để giá trị của biểu thức 2x2+x-7 chia hết cho giá trị của biểu thức x-2
b) tìm n thuộc Z để giá trị của biểu thức 2n2-n+2 chia hết cho giá trị của biểu thức 2n+1
Giúp mình
Cho phân số A= \(\frac{5n+2}{2n+7}\)( n thuộc Z )
a, Tìm n để A có giá trị = \(\frac{7}{9}\)
b, Tìm n thuộc Z nhận giá trị nguyên
c, Có bao nhiêu số nguyên n < 2016 để a là phân số tối giản
Giúp mik vs ạ, mik đag cần gấp. Mik sẽ tik cho ạ
a, (5n+2)9 = (2n+7)7
45n+18=14n+49
31n=31
n=1
a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)
\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)
\(\Leftrightarrow45n+18=14n+49\)
\(\Leftrightarrow31n=31\)
\(\Leftrightarrow n=1\)
n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)
Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.
\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)
Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)
Ta có bảng:
2n + 7 | 1 | -1 | 31 | -31 |
n | -3 | -4 | 12 | -19 |
KL | TM | TM | TM | TM |
Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)
c