tổng sau là số chính phương của số nào
B= 1 =3+5 = ... +(2n-1)
Tổng sau có phải là số chính phương ko ?
C=1+3+5+.....+(2n-1)
Mình đoán là :
=> ko phải là số chính phương
Mình ko biết nữa !
số số hạng của C là :
[ ( 2n - 1 ) - 1 ] : 2 + 1 = n ( số )
tổng của C là :
[ ( 2n - 1 ) + 1 ] x n : 2 = n x n = n2
=> C là số chính phương
Tổng sau có phải là số chính phương ko
C=1+3+5+...+(2n-1)
Dãy 1;3;5;..; 2n - 1 có n số hạng
A = (2n - 1+ 1).n : 2 = n.n = n 2 là số chính phương
C = 1 + 3 + 5 + ... + ( 2n-1 )
Số số hạng dãy trên là :
[ ( 2n - 1 ) - 1 ] : 2 + 1 = n ( số )
tổng trên là :
[( 2n - 1 ) + 1 ] x n : 2 = n x n = n2
=> tổng trên số số chính phương
tổng sau có phải là số chính phương ko? A = 1+3+5+7+...+(2n+1) help me
Tổng sau là số chính phương ko ?
a)C=1+3+5+7+...+(2n-1)với n là số tự nhiên
b)D=2+4+6+8+...+2n với n là số tự nhiên
CMR tổng sau là số chính phương: 1+3+5+...+(2n-1)
Tính bằng cách quy nạp
với n=1 ta có VT =1, VP =1 nên (2) đúng với n=1.
Giả sử (2) đúng với n=k, tức là.
1+3+5+⋯+(2k−1)=k2,k∈N∗.
Ta chứng minh (2) đúng với n=k+1, tức là chứng minh
1+3+5+⋯+(2k−1)+(2k+1)=(k+1)2
Thật vậy, từ giả thiết quy nạp, ta có
1+3+5+⋯+(2k−1)+(2k+1)=k2+(2k+1)=(k+1)2
Vậy (2) đúng với mọi số nguyên dương n.
1) Chứng minh rằng :
a) Nếu n là tổng hai số chính phương thì 2n cũng là tổng hai số chính phương
b) Nếu 2n là tổng của hai số chính phương thì n cũng là tổng hai số chính phương
#)Giải :
a)Theo đầu bài, ta có : \(n=a^2+b^2\)
\(\Rightarrow2n=2a^2+2b^2\Rightarrow2n=a^2+2ab+b^2+a^2-2ab+b^2=\left(a+b\right)^2+\left(a-b\right)^2\)
\(\Rightarrowđpcm\)
b)Theo đầu bài, ta có : \(2n=a^2+b^2\)
\(\Rightarrow n=\frac{a^2}{2}+\frac{b^2}{2}\Rightarrow\left(\frac{a^2}{4}+2.\frac{a}{2}.\frac{b}{2}+\frac{b^2}{4}\right)+\left(\frac{a^2}{4}+2.\frac{a}{2}.\frac{b}{2}+\frac{b^2}{4}\right)=\frac{\left(a+b\right)^2}{2}+\frac{\left(a-b\right)^2}{2}\)
\(\Rightarrowđpcm\)
Số chính phương là số bằng bình phương của một số tự nhiên (ví dụ: 0; 1; 4; 6; 16;...). Chứng tỏ rằng 1 + 3 + 5 +...+(2n - 3) + (2n - 1) là một số chính phương.
Số số hạng của tổng đã cho là :
[(2n - 1) - 1] : 2 + 1 = (2n - 2)) : 2 + 1
= 2(n - 1) : 2 + 1
= n - 1 + 1
= n
Trung bình ộng của tổng là :
[(2n - 1) + 1] : 2 = (2n - 1 + 1) : 2
= 2n : 2
= n
Khi đó ; 1 + 3 + 5 = .... + (2n - 3) + (2n - 1) = n.n = n2
Vậy 1 + 3 + 5 = .... + (2n - 3) + (2n - 1) là số chính phương
Chứng minh rằng tổng của n số lẻ đầu tiên là một số chính phương :1+3+5+....+(2n+1)=n^2
Chứng minh rằng tổng S = 1+3+5+...+(2n+1) là số chính phương với mọi n là số tự nhiên
\(S=\left[\left(2n+1-1\right):2+1\right]\times\left(2n+1+1\right):2\)
\(S=\left(n+1\right)\times\left(2n+2\right):2\)
\(S=\left(n+1\right)\times\left(n+1\right)\)
\(S=\left(n+1\right)^2\)( dpcm )