cho tam giác abc vuông tại a.ah là đường cao ứng với cạnh huyền của tam giác.biết ch=4cm,hb=16cm.tính độ daif ah,ab,ac
cho tam giác abc vuông tại a,ah là đường cao ứng với cạnh huyền của tam giác.biết ch=4cm,hb=16cm.tính độ dài ah,ab,ac
Cho tam giác ABC vuông tại A có đường cao AH.Biết AC=15cm; HB=16cm.Tính BC;AB;AH;CH
Ta có: \(AC^2=CH\cdot BC\)
\(\Leftrightarrow CH^2+16HC-225=0\)
\(\Leftrightarrow CH^2+25HC-9HC-225=0\)
\(\Leftrightarrow CH=9\left(cm\right)\)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AH^2=15^2-9^2=144\)
hay AH=12cm
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AB^2=12^2+16^2=400\)
hay AB=20cm
Ta có: BC=BH+HC
nên BC=9+16=25cm
1/cho tam giác abc vuông tại a đường cao AH=2cm,AB=1/2AC. tính AB,AC,HB,HC
2/cho tam giác abc vuông tại a đường cao AH=12cm.tính cạnh huyền BC,biết \(\dfrac{HB}{HC}\)=\(\dfrac{1}{3}\)
Bài 2:
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)
nên HC=3HB
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB^2=48\)
\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)
Bài 1:
ta có: \(AB=\dfrac{1}{2}AC\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)
\(\Leftrightarrow HC=4HB\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=1\left(cm\right)\)
\(\Leftrightarrow HC=4\left(cm\right)\)
hay BC=5(cm)
Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)
1, Cho tam giác ABC ( góc A=90 độ). Từ trung điểm I của cạnh AC kẻ đường thẳng vuông góc với cạnh huyền BC tại D. C/m: BD^2-CD^2=AB^2
2, Cho tam giác ABC( góc A=90 độ). phân giác AD, đường cao AH. biết BD=15cm, CD=20cm, tính BH, CH
3, Cho tam giác ABC( góc A=90 độ). AB=12cm, AC=16cm, phân giác AD, đường cao AH. tính HB,HC,HD
4, Cho tam giác ABC( góc A=90 độ) đường cao AH. Tính chu vi tam giác ABC biết AH= 14 cm, HB/HC=1/4
giúp đỡ mình nhé, mình đang cần gấp
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
Cho tam giác ABC vuông tại A đường cao AH. Chia cạnh huyền BC thành 2 đoạn thẳng HB=1cm và HC=4cm. Dựng đường tròn (A;2cm) A. Tính Ah,AB,AC và các góc B, góc C của tam giác ABC B. Chứng minh BC là tiếp tuyến đường tròn (A;2cm) C. Dựng đường kính DH của đường tròn (A;2cm). Tiếp tuyến của đường tròn (A;2cm) tại D cắt tia đối của tia AB ở E. Chứng minh tứ giác BDRH là hình bình hành.
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH^2=1\cdot4=4\)
=>\(AH=\sqrt{4}=2\left(cm\right)\)
BC=BH+CH
=>BC=1+4=5(cm)
XétΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AB^2=1\cdot5=5\\AC^2=4\cdot5=20\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)
Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{\sqrt{5}}{5}\)
nên \(\widehat{C}\simeq27^0\)
ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{B}=90^0-27^0=63^0\)
b: AH=2cm
=>H thuộc (A;2cm)
Xét (A;2cm) có
AH là bán kính
BC\(\perp\)AH tại H
Do đó: BC là tiếp tuyến của (A;2cm)
c: Sửa đề: BDEH
Xét ΔAHB vuông tại H và ΔADE vuông tại D có
AH=AD
\(\widehat{HAB}=\widehat{DAE}\)
Do đó: ΔAHB=ΔADE
=>HB=DE
Xét tứ giác BDEH có
BH//ED
BH=ED
Do đó: BDEH là hình bình hành
Cho tam giác ABC vuông tại A có đường cao AH. Biết AB=15cm;HC=16cm.Tính HB,BC,AH,AC.
theo hệ thức lượng tam giác vuông
AC^2 = HC*BC = 16*BC (1)
AH^2 = HC*BH = 16*BH (2)
1/AH^2 = 1/AC^2 + 1/AB^2 (3)
thay 1,2 vào 3:
1/16*BH = 1/16*BC + 1/15^2 (4)
mặt khác:
BH = BC - HC = BC -16
thay vào 4:
1/16*(BC -16) = 1/16*BC + 1/225
<=> 1/(BC - 16) - 1/BC = 16/225
<=> (BC -BC +16)/((BC - 16)*BC) =16/225
<=> BC^2 - 16*BC - 225 = 0
=> BC = 25 (thỏa mãn) BC = -9 (loại)
thay vào 1 ta có AC = 20 cm
2 ta có AH = 12 cm
Cố lên bạn nha!
Đặt HB=x(cm,x>0) => BC=HB+HC=x+16
Ta có: Tam giác ABC vuông tại A có AH là đường cao
=>AB2=HB.BC
=>152=x.(x+16)
=>225=x2+16x
=>x2+16x-225=0
=>x2+25x-9x-225=0
=>x.(x+25)-9.(x+25)=0
=>(x+25).(x-9)=0
=>x=-25(loại) hay x=9(nhận)
Vậy HB=9(cm)
Ta có: AH2=HB.HC(hệ thức lượng)
=>AH2=9.16=144
=AH=12(cm)
Ta có: AC2=HC.BC(hệ thức lượng)
=>AC2=16.25=400
=>AC=20(cm)
Ta có: BC=HB+HC=9+16=25(cm)
Cho tam giác ABC vuông tại A , đường cao AH chia cạnh BC thành hai đoạn thẳng CH = 4cm, HB = 9cm.
a/ Tính AH ; AC; sinHÂC.
b/ Gọi D; E lần lượt là hình chiếu của H trên các cạnh AB ; AC
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=6\left(cm\right)\\CA=2\sqrt{13}\left(cm\right)\end{matrix}\right.\)
Bài 7. Cho tam giác ABC vuông tại A (AB < AC), đường cao AH, trung tuyến AM. Biết rằng AH = 4,8cm,
AM = 5cm. Tính độ dài cạnh AC?
Bài 8. Đường trung tuyến ứng với cạnh huyền của một tam giác vuông dài 25cm. Tỉ số hai hình chiếu của
hai cạnh góc vuông trên cạnh huyền là 16 : 9. Tính độ dài hai cạnh góc vuông
Cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành 2 đoạn: BH = 4 và HC = 6 cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành 2 đoạn: BH = 4 và HC = 6 a) tính độ dài AH, AB, AC b) Gọi M là trung điểm của AC. Tính số đo góc AMB ( làm tròn đến độ)
a: \(AH=2\sqrt{6}\left(cm\right)\)
\(AB=2\sqrt{10}\left(cm\right)\)
\(AC=2\sqrt{15}\left(cm\right)\)