Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
helloeverybody
Xem chi tiết
Đỗ Vũ Minh Quang
Xem chi tiết
Phạm như nguyện
Xem chi tiết
rabbit
Xem chi tiết
Phong Trần Nam
28 tháng 7 2016 lúc 12:25

a)245.a+120.b=28764

=>5.49.a+5.24.b=28764

=>5(49a+24b)=28764

Vì 5 chia hết cho 5 =>5(49a+24b) chia hết cho 5 mà 28764 không chia hết cho 5 nên không thể tìm được 2 số tự nhiên a và b thỏa mãn.

b)36.a-12.b=1000

=>3.12.a-12.b=1000

=>12(3a-b)=1000

Vì 12 chia hết cho 12 => 12(3a-b) chia hết cho 12 mà 1000 không chia hết cho 12=>Không thể tìm được hai số tự nhiên a và b thỏa mãn.

Hoàng Khánh Nhi
25 tháng 11 2018 lúc 14:27

không biết

Đặc Bủh Lmao mao
Xem chi tiết
Hoàng Anh Phương
Xem chi tiết
Hoàng Anh Phương
28 tháng 3 2016 lúc 21:02

Giải:a) mọi ước chung của a và b hiển nhiên là ước của b . Đảo lại, do a  chia hết cho b nen b là ước của a và b . Vậy ( a,b)=b

B) Gọi r là số dư trong phép chia a cho b ( a>b). . Ta có a=bk+r(k thuộc N) cần chứng minh rằng ( a, b) = (b,r). Thật vậy ,nếu a và b Cùng chia hết cho d thì r chia hết cho d, do đó ước chung của a và b cũng là ước chung của d và r(1) . Đảo lại nếu nếu b và r cùng chia hết cho d thì a chia hết cho d, do đó ước chung của d và r cũng là ước chung của a và b(2) . Từ (1) và(2) suy ra tập hợp các ước chung của a và b và tập hợp các ước chung của d và r bằng nhau . Do đó hai số lớn nhất trong hai tập hợp bằng nhau, tức là (a,b)=(b,r).

C)72 chia 56 dư 16 nên (72,56)=(56,16)

56 chia 16 dư8 nên ( 56,16)=(16,8)

Mà 16 chia hết cho 8 nên (16,8)=8

Các bạn ơi mình làm đúng 100% k mình nha kẻo mình tốn công viết

Thảo Nguyễn
Xem chi tiết
Nguyễn Thị Hương
Xem chi tiết
Bùi Hồng Sang
Xem chi tiết
Diệu Anh
26 tháng 4 2020 lúc 18:39

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

Khách vãng lai đã xóa