ChoΔABC có các đường cao BD,CE. Gọi I là trung điểm BC.
a, CMR Δ EID là tam giác cân.
b, Gọi H,K,I lần lượt là hình chiếu vuông góc của B,C,I trên đường thẳng ED. CMR I là trung điểm của ED. Từ đó suy ra HE=DK
Cho ΔABC có các đường cao BD,CE. Gọi I là trung điểm BC.
a, CMR ΔEID là tam giác cân.
b, Gọi H , C ,I trên đường thẳng ED. CMR I là trung điểm của ED từ đó suy ra HE=DK
cho tam giác ABC cân tại A , các đường phân giác BD;CE gặp nhau tại O . Gọi I là trung điểm BC , K là trung điểm của ED , CMR: a, tam giác AED cân ; b, ED//BC ; c, AI vuông góc ED ; d, BE=ED=DC ; e, A,I,O,K thẳng hàng ; g, Vẽ Bx là tia phân giác góc ngoài tại B , Bx cắt AI ở H . CMR : ECH =90 độ
cho tam giác nhọn ABC vẽ BD,CE lần lượt vuông góc AC,AB. Gọi M là trung điểm của BC, H là trung điểm của ED.
a) chứng minh MH vuông góc với DE
b) Gọi I,K lần lượt là chân của đường vuông góc kẻ từ B và C đến đường thẳng ED. GỌi O là giao điểm của IC và MH. Chứng minh IH=IK; OI=OC
Cho tam giác ABC, các đường cao BD và CE. Gọi MN là chân các đường vuông góc kẻ từ B và C đến DE. Gọi I là trung điểm DE. K là trung điểm BC. CMR: a. KI vuông góc ED
b. EM = DN
Cho tam giác ABC có AB = AC , góc A < 60 độ . Các đường cao BD và CE cắt nhau tại H . CMR :
a. AE = AD
b. ED // BC
c. BC < AB
d. Gọi I , K lần lượt là trung điểm của ED và BC . CM A , I , H , K thẳng hàng
Cho đường tròn (O;R) và dây AB không qua tâm. Gọi I là trung điểm của AB. Trên cung nhỏ AB lấy các điểm phân biệt C và E bất kì ( khác A và B). Gọi F, D lần lượt là giao điểm của EI và CI với (O).
a) CM: IE.IF= IC.ID
b) Vẽ dây cung FG song song AB. Gọi M, N lần lượt là giao điểm của CF, ED với AB. CMR: tam giác IFG cân tại I, từ đó chỉ ra rằng tứ giác có bốn đỉnh I, D, N, G là tứ giác nội tiếp.
c)Gọi H,K lần lượt là trung điểm CF, ED. CMR: tam giác CHI đồng dạng tam giác EKI, từ đó chỉ ra rằng I là trung điểm của đoạn thẳng MN.
d) Gọi L là giao điểm của AC, DB; T là giao điểm của CE và GD; V là giao điểm của hai đường tròn ngoại tiếp các tam giác AEV và tam giác DET. CMR: 4 điểm D,A,L,Q cùng thuộc một đường tròn, từ đó chỉ ra rằng ba điểm L,T,V thẳng hàng
Cho tam giác nhọn ABC có 2 đường cao là BD và CE. Gọi M là trung điểm của BC.
a) Chứng minh MED là tam giác cân.
b) Gọi I, K lần lượt là chân các đường vuông góc hạ từ B và C đến đường thẳng ED. Chứng minh rằng IE=DK.
Cho tam giác nhọn ABC , BD và CE là hai đường cao cắt nhau tại H .
a, Chứng minh : Tam giác HED đồng dạng với tam giác HBC .
b, Gọi M là trung điểm của cạnh BC . Và P , Q lần lượt là hình chiếu của B , C trên đường thẳng ED .
Chứng minh : PE = QD .
c, Gọi N là điểm trên tia đối của tia HA . Đường thẳng qua N vuông góc với MH cắt AB , AC lần lượt tại I , K .
Chứng minh rằng : N là trung điểm của IK .
Cho tam giác nhọn ABC , BD và CE là hai đường cao cắt nhau tại H .
a, Chứng minh : Tam giác HED đồng dạng với tam giác HBC .
b, Gọi M là trung điểm của cạnh BC . Và P , Q lần lượt là hình chiếu của B , C trên đường thẳng ED .
Chứng minh : PE = QD .
c, Gọi N là điểm trên tia đối của tia HA . Đường thẳng qua N vuông góc với MH cắt AB , AC lần lượt tại I , K .
Chứng minh rằng : N là trung điểm của IK .