cho x/y+z+t=y/z+t+x=z/t+x+y=t/x+y+z
chung minh bieu thuc sau co gia tri nguyen
p=(x+y/z+t)+(y+z/t+x)+(z+t/x+y)+(t+x/y+z)
cho x/y+z+t=y/z+t+x=z/t+x+y=t/x+y+z cmr bieu thuc sau co gia tri nguyen P=(x+y/z+t)+(y+z/t+x)+(z+t/x+y)=(t+x/y+z)
cho x/(y+z+t)=y/(z+t+x)=z/(t+x+y)=t/(x+y+z)
cmr bieu thuc sau co gia tri nguyen
P=(x+y)/(z+t)+(y+z)/(t+x)+(z+t)/(x+y)+(t+x)/(y+z)
Cho \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\). Tinh gia tri cua bieu thuc :
\(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\)
Ta có: \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
\(\Rightarrow\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{t+x+y}+1=\dfrac{t}{x+y+z}+1\)\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{t+x+y}=\dfrac{x+y+z+t}{x+y+z}\) (*)
+) Nếu \(x+y+z+t\ne0\) thì từ (*) suy ra:
\(y+z+t=z+t+x=t+x+y=x+y+z\)
\(\Rightarrow x=y=z=t\)
\(\Rightarrow P=\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}\) \(\Rightarrow P=1+1+1+1=4\)
+) Nếu \(x+y+z+t=0\) thì \(\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(t+x\right)\\z+t=-\left(x+y\right)\\t+x=-\left(y+z\right)\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{-\left(z+t\right)}{z+t}+\dfrac{-\left(t+x\right)}{t+x}+\dfrac{-\left(x+y\right)}{x+y}+\dfrac{-\left(y+z\right)}{y+z}\)\(\Rightarrow P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
Vậy \(P=4\) hoặc \(P=-4\)
Cho \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Tinh gia tri cua da thuc\(P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
Cho \(\frac{x}{y+z+t}\)=\(\frac{y}{z+t+x}\)=\(\frac{z}{t+x+y}\)=\(\frac{t}{x+y+z}\)
CMR : bieu thuc sau co gia tri nguyen P = \(\frac{x+y}{z+t}\)+\(\frac{y+z}{t+x}\)+\(\frac{z+t}{x+y}\)+\(\frac{t+x}{y+z}\)
dùng tính chất của dãy tỉ số bằng nhau từ đó suy ra x=y=z=t là chứng minh được.
Cho x ; y ; z ; t : CM : \(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\)co gia tri khong phai la so tu nhien
bai 1:Tim x,y,z \(\varepsilon\)Z ,sao cho :|x-y|+|y-z|+|z-x|+|z-t|+|t-x|=2003
bai 2:Cho bieu thuc:E=\(\frac{5-x}{x-2}\)tim gia tri nguyen cua x de
a) E co gia tri nguyen
b)E co gia tri nho nhat
cho x/y+z+t=y/z+t+x=z/t+x+y=t/x+y+z Chứng minh rằng biểu thức sau có giá trị nguyên: A=(x+y/z+t)+(y+z/t+x)+(z+t/x+y)+(t+x/y+z)
Cho x/y+z+t=y/z+t+x=z/t+x+y=t/x+y+z. Chứng minh rằng: biểu thức sau có giá trị nguyên: A=x+
y/z+t + y+z/t+x + z+t/x+y + t+x/y+z