tìm giá trị nhỏ nhất
\(C=2x^2+9y^2-6xy-2x+2018\)
\(D=x^2-2xy+6y^2-12x+2y+45\)
Tìm giá trị nhỏ nhất của biểu thức
B=x^2 -2xy +2y^2 +5x
Q= 2x^2 -6xy+9y^2-x +1
ta có \(2B=2x^2-4xy+4y^2+10x\)
\(=\left(x^2-4xy+4y^2\right)+\left(x^2+10x+25\right)-25\)
\(=\left(x-2y\right)^2+\left(x+5\right)^2-25\)
vì \(\left(x-2y\right)^2>=0;\left(x+5\right)^2>=0\)
=>\(2B>=-25=>b>=-\frac{25}{2}\)
dấu = xảy ra <=> \(\hept{\begin{cases}x=-5\\y=-10\end{cases}}\)
b) ta có
\(Q=x^2-6xy+9y^2+x^2-x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-3y\right)^2+\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
=> Q>=3/4
dấu = xảy ra <=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{2}\end{cases}}\)
Tìm giá trị nhỏ nhất của :
A=x^2-2xy+6y^2-12x+2y+45
x^2 - 2xy + 6y^2 - 12x + 2y +45
= x^2 - 2x(y+6) + (y+6)^2 - (y+6)^2 + 6y^2 +2y + 45
= (x - y - 6)^2 - y^2 - 12y - 36 + 6y^2 + 2y + 45
= (x - y - 6)^2 + 5y^2 - 10y + 9
= (x - y - 6)^2 + 5.(y^2 - 2y +1) + 4
= (x - y - 6)^2 + 5.(y-1)^2 + 4
=>> MIN = 4 khi (x;y) = {(7;1)}
\(A=x^2-2xy+6y^2-12x+2y+45\)
\(=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+4\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
GTNN A = 4 Khi: \(\hept{\begin{cases}y-1=0\\x-y-6=0\end{cases}\Rightarrow\hept{\begin{cases}y=1\\x=7\end{cases}}}\)
\(A=x^2-2xy+6y^2-12x+2y\)\(+45\)
\(=x^2+y^2+36-2xy-12x\)\(+12y+5y^2-10y+5+4\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2\)\(+4\ge4\)
GTNN của A là 4 khi \(\hept{\begin{cases}y-1=0\\x-y-6=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}y=1\\x-y=6\end{cases}\Rightarrow\hept{\begin{cases}y=1\\x=7\end{cases}}}\)
Vậy BT A đạt giá trị nhỏ nhất là 4 tại x = 7 và y = 1
tìm giá trị nhỏ nhất
\(C=2x^2+9y^2-6xy-2x+2018\)
\(C=\left(x^2-6xy+9y^2\right)+\left(x^2-2x+1\right)+2017=\left(x-3y\right)^2+\left(x-1\right)^2+2017\)
\(\ge0+0+2017=2017.\Rightarrow C_{min}=2017\Leftrightarrow\hept{\begin{cases}x-1=0\\x-3y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{3}\end{cases}}\)
C= (x-3y)2+(x-1)2+2017 \(\ge2017\)
Min C = 2017
\(C=2x^2+9y^2-6xy-2x+2018\)
\(=x^2-6xy+9y^2+x^2-2x+1+2017\)
\(=\left(x-3y\right)^2+\left(x-1\right)^2+2017\ge2017\forall x;y\)
Dấu"=" xảy ra<=> \(\hept{\begin{cases}\left(x-3y\right)^2=0\\\left(x-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x-3y=0\\x=1\end{cases}\Rightarrow y=\frac{1}{3}}\)
Tính giá trị nhỏ nhất của B=x^2-2xy+6xy^2-12x+2y+45
Tìm giá trị nhỏ nhất: A = x2 - 2xy + 6y2 - 12x + 2y + 45
\(A=x^2-2xy+6y^2-12x+2y+54\)
\(A=x^2-2xy+y^2-12x+12y+36+5y^2-10y+5+4\)
\(A=\left(x-y\right)^2-2.6\left(x-y\right)+36+5\left(y^2-2y+1\right)+4\)
\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)
Do: \(\left(x-y-6\right)^2\ge0\forall xy\); \(5\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-y-6\right)^2+5\left(y-1\right)^2\ge0\)
\(\Leftrightarrow A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
\(\Rightarrow A_{Min}=4\)
Dấu "=" xảy ra khi \(x=7;y=1\)
Tìm x,y sao cho
A= 2x^2 + 9y^2 - 6xy - 12y +2021 có giá trị nhỏ nhất
B= -x^2 + 2xy - 4x + 2x + 10y - 8 có giá trị lớn nhất
Tìm giá trị nhỏ nhất A=x2-2xy+6y2 -12x+2y+45
\(A=x^2-2xy+6y^2-12x+2y+45\)
\(=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+4\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
Gía trị nhỏ nhất : \(A=4\)Khi \(\hept{\begin{cases}y-1=0\\x-y-6=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\x=7\end{cases}}\)
Tìm x,y sao cho:
A= 2x^2+9y^2-6xy-6x-12y+2005 có giá trị nhỏ nhất
B= -x^2+2xy-4y^2+2x+10y-8 có giá trị lớn nhất
Tìm giá trị nhỏ nhất của biểu thức A = x2 - 2xy + 6y2 -12x+ 2y + 45.
\(A=\left(x-y-6\right)^2+6y^2+2y+45-\left(y^2+12y+36\right)\\ \)
\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)\(\ge4\)
Amin=4 khi y=1; x=7
A = (x - y - 6)2 - 6y2 - 2y - 45 - (y2 - 12y - 36)
A = (x - y -6)2 + 5(y-1)2 +4 \(\ge\)4
Amin = 4 khi y = 1; x = 7
#chanh
\(A=\left(x-y-6\right)^2+6y^2+2y+45-\left(y^2+12y+36\right) \)
\(A=\left(x-7-6\right)^2+5\left(y-1^2\right)+4\ge4\)
\(Amin=4\)\(khi\)\(y=1;x=7\)