Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Hoàng Phương Anh
Xem chi tiết
Phạm Hạnh Nguyên
Xem chi tiết
Hoàng Nguyễn Văn
18 tháng 2 2018 lúc 17:24

giả sử A chia hết cho 49 => A chia hết 7 => (n+5)(n-2)+14 chia hết 7 mà 14 chia hết 7=>(n+5)(n-2) chia hết 7 mà 7 là số nguyên tố =>n+5 chia hết 7 hoặc n-2 chia hết cho 7 mà (n+5)-(n-2)=7 =>(n+5)(n-2) chia hết cho 49 mà A chia hết cho 49=>14 chia hết cho 49 (vô lý) => giả sử sai => a ko chia hết cho 49

sakura haruko
Xem chi tiết
Nguyễn Thái Anh
Xem chi tiết
Vũ Khánh Huyền
Xem chi tiết
Vũ Khánh Huyền
11 tháng 3 2022 lúc 19:15

giúp mình với 

 

vu tien dat
Xem chi tiết
Nguyễn Đăng Diện
Xem chi tiết
kevinbin
Xem chi tiết
Kiệt Nguyễn
11 tháng 8 2020 lúc 20:07

a) Ta có: \(n^2+7n+22=\left(n+2\right)\left(n+5\right)+12\)

*) Nếu \(n+2⋮3\)thì \(\left(n+2\right)+3⋮3\)hay \(n+5⋮3\)

\(\Rightarrow\left(n+2\right)\left(n+5\right)⋮9\)

Mà 12 không chia hết cho 9 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 9

*) Nếu n + 2 không chia hết cho 3 thì n + 5 không chia hết cho 3 suy ra \(\left(n+2\right)\left(n+5\right)\)không chia hết cho 3

Mà 12 chia hết cho 3 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 3 nên không chia hết cho 9

Vậy \(n^2+7n+22\)không chia hết cho 9 (đpcm)

b) \(n^2-5n-49=\left(n+4\right)\left(n-9\right)-13\)

*) Nếu \(n+4⋮13\)thì \(\left(n+4\right)-13⋮13\)hay \(n-9⋮13\)

\(\Rightarrow\left(n+4\right)\left(n-9\right)⋮169\)

Mà 13 không chia hết cho 169 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 169

*) Nếu n + 4 không chia hết cho 13 thì n - 9 không chia hết cho 13 suy ra \(\left(n+4\right)\left(n-9\right)\)không chia hết cho 13

Mà 13 chia hết cho 13 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 13 nên không chia hết cho 169

Vậy \(n^2-5n-49\)không chia hết cho 169 (đpcm)

Khách vãng lai đã xóa
FL.Hermit
11 tháng 8 2020 lúc 20:12

a) G/s phản chứng \(n^2+7n+22⋮9\)

=> \(n^2+4n+4+\left(3n+18\right)⋮9\)

=> \(\left(n+2\right)^2+3\left(n+6\right)⋮9\)

=> \(\left(n+2\right)^2+3\left(n+6\right)⋮3\)

=> \(\left(n+2\right)^2⋮3\)

=> \(\left(n+2\right)^2⋮9\)

Mà: \(\left(n+2\right)^2+\left(3n+18\right)⋮9\) 

=> \(3n⋮9\)

=> \(n⋮3\)

Nhưng khi đó thì: \(n^2+7n⋮3\)nhg 22 ko chia hết cho 3

=> \(n^2+7n+22\)không chia hết cho 3 => Ko thể chia hết cho 9

=> Điều giả sử là sai

=> TA CÓ ĐPCM

Khách vãng lai đã xóa
FL.Hermit
11 tháng 8 2020 lúc 20:19

b) Ta ttu g/s phản chứng \(n^2-5n-49⋮169\)

=> \(\left(n+4\right)^2-13n-65⋮13\)     (1)

Dễ thấy \(13n+65=13\left(n+5\right)⋮13\)

=> \(\left(n+4\right)^2⋮13\)

=> \(\left(n+4\right)^2⋮169\)(2)

TỪ (1) VÀ (2) THÌ: \(13\left(n+5\right)⋮169\)

=> \(n+5⋮13\)

=> \(n^2-25⋮13\)(3)

Và cx => \(5n+25⋮13\)(4)

(3); (4) => \(n^2-5n-50⋮13\)

=> \(n^2-5n-49-1⋮13\)

Mà: \(n^2-5n-49⋮13\)

=> \(1⋮13\)

NHG ĐÂY LÀ 1 ĐIỀU VÔ LÍ

=> ĐIỀU GIẢ SỬ LÀ SAI

=> TA CÓ ĐPCM.

Khách vãng lai đã xóa
lê trang
Xem chi tiết
Mysterious Person
28 tháng 6 2017 lúc 16:40

ta có : (5n + 2)2 - 4 = ((5n)2 + 2.2.5n + 22) - 4 = (5n)2 + 20n + 4 - 4
= 25n2 + 20n = 5n(5n + 4)

\(\Rightarrow\) (5n + 2)2 - 4 = 5n(5n + 4)\(⋮\)5 \(\Rightarrow\) (5n + 2)2 - 4 chia hết cho 5 với mọi n thuộc Z (đpcm)