Cmr: n^2 - 5n - 49 không chia hết cho 169 với mọi n thuộc Z
1 CMR
a) (n+20152016)+(n+20152016) chia hết cho 2 với mọi n thuộc N
b) n2+5n+7 không chia hết cho 2 với mọi n thuộc N
c)n(n+1)+1 không chia hết cho 5 với mọi n thuộc N
d)n2+n+2 không chia hết cho 15 với mọi n thuộc N
e)n2+n+2 không chia hết cho 3 với mọi n thuộc N
f)n2+n+1 không chia hết cho 5 với mọi n thuộc N
2 CMR
a)n2+11n+39 không chia hết cho 49 với mioj n thuộc N
b)n2-n+10 không chia hết cho 169 với mọi n thuộc N
c)n2+3n+5 không chia hết cho 121 với mọi n thuộc N
d)4n2+8n-6 không chia hết cho 25 với mọi n thuộc N
e)n2-5n-49 không chia hết cho 169 với mọi n thuộc N
Chứng minh rằng A= (n+5).(n-2) + 14 không chia hết cho 49 với mọi n thuộc Z
B= n2 + 5n +16 không chia hết cho 169 với mọi n thuộc Z
giả sử A chia hết cho 49 => A chia hết 7 => (n+5)(n-2)+14 chia hết 7 mà 14 chia hết 7=>(n+5)(n-2) chia hết 7 mà 7 là số nguyên tố =>n+5 chia hết 7 hoặc n-2 chia hết cho 7 mà (n+5)-(n-2)=7 =>(n+5)(n-2) chia hết cho 49 mà A chia hết cho 49=>14 chia hết cho 49 (vô lý) => giả sử sai => a ko chia hết cho 49
Cmr với mọi số nguyên n thì
a)n^2+3n+4 không chia hết cho 49
b)n^2+5n+16 không chia hết cho 169
Giúp vớiiiiii!
Chứng minh: \(n^2-5n-49\) không chia hết cho 169 với mọi n thuộc N
Cmr với mọi n thuộc Z thì n^4+5n^2+9 không chia hết cho121
Chứng minh rằng với mọi n thì:
a, P = n2 + 3n + 4 không chia hết cho 49
b, Q = n2 + 5n + 16 không chia hết cho 169
CMR với mọi n thuộc Z thì:
a. (n-1)*(n+2)+12 không chia hết cho 9
b. (n+2)*(n+9)+21 không chia hết ch 49
Chứng minh rằng với mọi số nguyên n :
a, n2 + 7n + 22 không chia hết cho 9
b, n2 _ 5n _ 49 không chia hết cho 169
a) Ta có: \(n^2+7n+22=\left(n+2\right)\left(n+5\right)+12\)
*) Nếu \(n+2⋮3\)thì \(\left(n+2\right)+3⋮3\)hay \(n+5⋮3\)
\(\Rightarrow\left(n+2\right)\left(n+5\right)⋮9\)
Mà 12 không chia hết cho 9 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 9
*) Nếu n + 2 không chia hết cho 3 thì n + 5 không chia hết cho 3 suy ra \(\left(n+2\right)\left(n+5\right)\)không chia hết cho 3
Mà 12 chia hết cho 3 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 3 nên không chia hết cho 9
Vậy \(n^2+7n+22\)không chia hết cho 9 (đpcm)
b) \(n^2-5n-49=\left(n+4\right)\left(n-9\right)-13\)
*) Nếu \(n+4⋮13\)thì \(\left(n+4\right)-13⋮13\)hay \(n-9⋮13\)
\(\Rightarrow\left(n+4\right)\left(n-9\right)⋮169\)
Mà 13 không chia hết cho 169 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 169
*) Nếu n + 4 không chia hết cho 13 thì n - 9 không chia hết cho 13 suy ra \(\left(n+4\right)\left(n-9\right)\)không chia hết cho 13
Mà 13 chia hết cho 13 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 13 nên không chia hết cho 169
Vậy \(n^2-5n-49\)không chia hết cho 169 (đpcm)
a) G/s phản chứng \(n^2+7n+22⋮9\)
=> \(n^2+4n+4+\left(3n+18\right)⋮9\)
=> \(\left(n+2\right)^2+3\left(n+6\right)⋮9\)
=> \(\left(n+2\right)^2+3\left(n+6\right)⋮3\)
=> \(\left(n+2\right)^2⋮3\)
=> \(\left(n+2\right)^2⋮9\)
Mà: \(\left(n+2\right)^2+\left(3n+18\right)⋮9\)
=> \(3n⋮9\)
=> \(n⋮3\)
Nhưng khi đó thì: \(n^2+7n⋮3\)nhg 22 ko chia hết cho 3
=> \(n^2+7n+22\)không chia hết cho 3 => Ko thể chia hết cho 9
=> Điều giả sử là sai
=> TA CÓ ĐPCM
b) Ta ttu g/s phản chứng \(n^2-5n-49⋮169\)
=> \(\left(n+4\right)^2-13n-65⋮13\) (1)
Dễ thấy \(13n+65=13\left(n+5\right)⋮13\)
=> \(\left(n+4\right)^2⋮13\)
=> \(\left(n+4\right)^2⋮169\)(2)
TỪ (1) VÀ (2) THÌ: \(13\left(n+5\right)⋮169\)
=> \(n+5⋮13\)
=> \(n^2-25⋮13\)(3)
Và cx => \(5n+25⋮13\)(4)
(3); (4) => \(n^2-5n-50⋮13\)
=> \(n^2-5n-49-1⋮13\)
Mà: \(n^2-5n-49⋮13\)
=> \(1⋮13\)
NHG ĐÂY LÀ 1 ĐIỀU VÔ LÍ
=> ĐIỀU GIẢ SỬ LÀ SAI
=> TA CÓ ĐPCM.
CMR:(5n+2)2-4 chia hết cho 5 với mọi n thuộc Z
ta có : (5n + 2)2 - 4 = ((5n)2 + 2.2.5n + 22) - 4 = (5n)2 + 20n + 4 - 4
= 25n2 + 20n = 5n(5n + 4)
\(\Rightarrow\) (5n + 2)2 - 4 = 5n(5n + 4)\(⋮\)5 \(\Rightarrow\) (5n + 2)2 - 4 chia hết cho 5 với mọi n thuộc Z (đpcm)