Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngọc phạm
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
14 tháng 6 2020 lúc 19:25

\(A=\frac{1}{3}x^3y^4-xy+\frac{1}{6}x^3y^4+3xy-\frac{1}{2}x^3y^4-1\)

\(=\left(\frac{1}{3}x^3y^4+\frac{1}{6}x^3y^4-\frac{1}{2}x^3y^4\right)+\left(3xy-xy\right)-1\)

\(=2xy-1\)

Thay x = 2016 ; y = -1/2016 vào A ta được :

\(A=2\cdot2016\cdot\left(-\frac{1}{2016}\right)-1\)

\(=-2-1\)

\(=-3\)

Vậy giá trị của A = -3 khi x = 2016 ; y = -1/2016

Khách vãng lai đã xóa
lewandoski
Xem chi tiết
Bùi Hải Ngọc
Xem chi tiết
Mr Lazy
27 tháng 7 2016 lúc 23:36

a, \(P=\left(x^4-8x^3+16x^2\right)+12x^2-48x+35\)

\(=\left(x^2-4x\right)^2+12\left(x^2-4x\right)+36-1\)

\(=\left(x^2-4x+6\right)^2-1\)

\(=\left[\left(x-2\right)^2+2\right]^2-1\)

\(\ge2^2-1=3\)

Cách khác \(P=\left(x-2\right)^2\left[\left(x-2\right)^2+4\right]+3\ge3\)

Đẳng thức xảy ra khi \(x=2.\)

b, \(xy\le\frac{\left(x+y\right)^2}{4}=9\)

Áp dụng bđt Co6si: \(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)

\(Q\ge\frac{102}{xy}+xy=xy+\frac{81}{xy}+\frac{21}{xy}\ge2\sqrt{xy.\frac{81}{xy}}+\frac{21}{9}=\frac{61}{3}.\)

Dấu bằng xảy ra khi \(x=y=3.\)

Bùi Hải Ngọc
28 tháng 7 2016 lúc 20:11

Mk camon bn nhiều nha =))

trmn
Xem chi tiết
lewandoski
Xem chi tiết
Tomari Shinnosuke
30 tháng 9 2016 lúc 12:52

Ta có\(\frac{x}{2}=\frac{y+4}{8}\)=> 8x=2(y+4) => 4x=y+4 => y=4x-4=4(x-1) (1)

Lại có xy=8 (2)

Thay (1) vào (2) ta được: x.4(x-1)=8 =>x(x-1)=2 => x- x =2 => x-x -2 =0 => x-2x + x -2=0 => x(x-2) +(x-2)=0

                                                                                                                                          => (x+1)(x-2)=0

                                                                                                                                          => x+1=0 hoặc x-2=0

                                                                                                                                          => x= -1 hoặc x=2

Từ đó suy ra y=4(x-1)=4[(-1) -1]= -8 hoặc y=4(x-1)=4(2-1)=4

Persistent
Xem chi tiết
Hoàng Thị Lan Hương
24 tháng 7 2017 lúc 17:36

Ta có \(P=\frac{x^2+y\left(x+y\right)}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^4\left(x-y\right)-y^4\left(x-y\right)}\)

\(=\frac{x^2+xy+y^2}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^4-y^4\right)}\)\(=\frac{x^2+xy+y^2}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)}\)

\(=\frac{x^2+xy+y^2}{x^2-y^2}.\frac{\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)\(=x^2+y^2=\left(x+y\right)^2-2xy\)

Thay \(x+y=5;xy=-\frac{1}{2}\Rightarrow P=5^2-2.\left(-\frac{1}{2}\right)=26\)

Vậy P=26

mon wang
Xem chi tiết
hoàng thị huyền trang
Xem chi tiết
alibaba nguyễn
10 tháng 1 2019 lúc 13:29

a/ \(P=\frac{1}{\sqrt{xy}}\)

b/ \(x^3=8-6x\)

\(\Rightarrow P=\frac{1}{\sqrt{x\left(x^2+6\right)}}=\frac{1}{\sqrt{x^3+6x}}=\frac{1}{\sqrt{8-6x+6x}}=\frac{1}{2\sqrt{2}}\)

vũ tiền châu
Xem chi tiết
khánhchitt3003
20 tháng 11 2017 lúc 15:04

câu 1 bình phg chuyển vế cậu sẽ thấy điều kì diệu

câu 2 adbđt \(8\sqrt[4]{4x+4}=4\sqrt[4]{4.4.4\left(x+1\right)}\le x+13\)