tìm các số nguyên thỏa mãn 37a2+26b2+60ab+64a+22b+160<=160
tìm các số nguyên a,b thỏa mãn: 37a2+26b2+60ab+64a+22b+160\(\le\)0
có thể tìm được 2 số TN ava2 b để thỏa mãn :
33a + 22b = 110115
a, Tìm tất cả các số nguyên x thỏa mãn -11<x<9. Tính tổng tất cả các số nguyên vừa tìm đc
b,Tìm tất cả các số nguyên x thỏa mãn -9<x<10.Tính tổng các số nguyên vừa tìm đc
c,Tìm tất cả các số nguyên x thỏa mãn -15<x<16.Tính tổng tất cả các số nguyên vừa tìm đc
Phần b và c là dấu lớn hơn hoặc bằng nhé !!
MN GIÚP MÌNH VỚI Ạ !!!!
a)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-10;-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8\right\}\)
Tổng các số nguyên trên là:
\((8-10).19:2=-19\)
b)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;...;6;7;8;9;10\right\}\)
Tổng các số trên là:
\((10-9).20:2=10\)
c) Các số nguyên x thỏa mãn là:
\(x\in\left\{-15;-14;-13;-12;-11;-10;-9;-8;-7;-6;-5;...;12;13;14;15;16\right\}\)
Tổng các số nguyên đó là:
\((16-15).32:2=16\)
b) Cho các số nguyên a, b thỏa: 3a +5b chia hết cho 31. Chứng tỏ 7a+ 22b chia hết cho 31
3a+5b⋮31
=>7(3a+5b)⋮31
=>21a+35b⋮31
=>21a+66b-31b⋮31
=>21a+66b⋮31
=>3(7a+22b)⋮31
=>7a+22b⋮31
Giả sử \(\)3a + 5b chia hết cho 31
ta có
\(3a+5b=31k\left(\right.k\in\mathbb{Z}\left.\right)\)
Ta có
\(7a+22b=\left(\right.3a+5b\left.\right)\cdot23\)
\(\left(\right.3a+5b\left.\right)\cdot23=69a+115b\)
Mà \(69 a + 115 b\) và \(7 a + 22 b\) chỉ khác nhau một bội của 31 (vì \(69 - 7 = 62 = 31 \cdot 2\), \(115 - 22 = 93 = 31 \cdot 3\))
⇒ Nên chúng có cùng tính chia hết cho 31
Do \(3 a + 5 b\) chia hết cho 31, suy ra \(\) 7a + 22b cũng chia hết cho 31
vậy
7a + 22b chia hết cho 31
Bài 4. Tìm các số nguyên x và y thỏa mãn (x+1).( y-2) =5 Bài 5. Tìm các số nguyên x và y thỏa mãn xy -2x + 3y
4:
(x+1)(y-2)=5
=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
:Tìm các số nguyên x, y thỏa mãn: x^4+x^2-y^2+y+10 .Choa,b,c là các số nguyên dương ,nguyên tố cùng nhau và thỏa mãn
a, tìm các số nguyên x thỏa mãn: (x2-7) . (x2-49) <0
b, tìm các số nguyên x,y thỏa mãn: x.y+x+y=4