Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Đức Huynh
Xem chi tiết
Công Chúa Tình Yêu
Xem chi tiết
Zlatan Ibrahimovic
5 tháng 6 2017 lúc 15:53

Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.

=>a)=...5

b)=...0.

c=...6

d=...1.

e)9^18=(9^2)^9=81^9=...1

Nguyễn Vũ Bảo Linh
Xem chi tiết
Nguyễn Vũ Bảo Linh
21 tháng 3 2022 lúc 19:52

giúp mình với

Bài 1:

 Đây là toán nâng cao chuyên đề tổng hiệu, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:

                          Giải:

 + Vì bỏ chữ số 3 ở tận cùng của số lớn ta được số bé nên số lớn gấp 10 lần số bé và 3 đơn vị

Theo bài ra ta có sơ đồ:

Theo sơ đồ ta có: 

Số bé là: (57 - 3) : (10 - 1) = 6

Số lớn là 57  + 6  = 63

Đáp số: Số lớn 63

             Số bé là: 6 

 

 

 

 

Ly
Xem chi tiết
Ly
Xem chi tiết
lê trọng phát
Xem chi tiết
Bùi Vân Khánh
Xem chi tiết
nguyenvankhoi196a
11 tháng 11 2017 lúc 12:22

tính tổng các dãy sau :

A = 1 + 2 + 22+…+ 2100

         B = 3 – 32 + 33 – …   – 3100

Bài giải:

                 A = 1 + 2 + 22 + …+ 2 100

Nhân a = 2 cho hai vế :

2A = 2 + 22 + 23 + …+ 2101

             tính : 2A – A = (2 + 22 + 23 + …+ 2101 ) – (1 +2 + 22+ …+2100)

Vậy     A = 2101 – 1

B = 3 – 32 + 33 – … – 3100

Nhân a = 3 cho hai vế : 3B = 32 – 33 + 34 – … –  3101

Tín : B + 3B = (3 – 33 + 33) – …- 3100) + ( 32 – 23 +34 – … – 3101)

4B = 3 – 3101

Vậy     B = ( 3- 3101) : 4

Vũ Quang Minh
Xem chi tiết
Lê Song Phương
19 tháng 11 2023 lúc 11:00

 Ta nhận thấy một số có tận cùng là \(x\) thì khi lũy thừa lên mũ \(4k+1\left(k\inℕ\right)\) thì số nhận được cũng sẽ có tận cùng là \(x\). (*)

 Thật vậy, giả sử \(N=\overline{a_0a_1a_2...a_n}\). Khi đó \(N^{4k+1}=\left(\overline{a_0a_1a_2...a_n}\right)^{4k+1}\) \(=\left(\overline{a_0a_1a_2...a_{n-1}0}+a_n\right)^{4k+1}\) \(=a_n^{4k+1}\) nên ta chỉ cần xét số dư của các số từ 0 đến 9 lũy thừa với số mũ \(4k+1\).

 Dễ nhận thấy nếu \(a_n\in\left\{0,1,5,6\right\}\) thì \(a_n^{4k+1}\) sẽ có chữ số tận cùng là \(a_n\).

 Nếu \(a_n\in\left\{3,7,9\right\}\) thì để ý rằng \(3^4=9^2=81;7^4=2401\) đều có tận cùng là 1 nên hiển nhiên \(a_n^{4k}=\left(a_n^4\right)^k\) có tận cùng là 1. Do đó nếu nhân thêm \(a_n\) thì \(a_n^{4k+1}\) có chữ số tận cùng là \(a_n\).

 Nếu \(a_n\in\left\{2,4,8\right\}\) thì do \(2^4=16;4^4=256;8^4=4096\) đều có chữ số tận cùng là 6 \(\Rightarrow a_n^{4k}\) có chữ số tận cùng là 6. Khi nhân thêm \(a_n\) vào thì bộ \(\left(a_n;a_n^{4k+1}\right)\) sẽ là \(\left(2;2\right);\left(4;4\right);\left(8;8\right)\)

 Vậy (*) đã được chứng minh.

 \(\Rightarrow\) S có chữ số tận cùng là \(2+3+4+...+4\) (tới đây bạn chỉ cần đếm xem có bao nhiêu trong mỗi chữ số từ 0 đến 9 xuất hiện trong tổng trên là xong nhé)

\(a_n^{4k}\)

Trương Ngọc Mai
Xem chi tiết
Sabrina Carson
9 tháng 8 2018 lúc 15:44

a)(...4)

b)(...4)

c)(...6)

tích đúng cho mình nha

Cô nàng cá tính
Xem chi tiết
Nguyễn Thị Minh Thư
28 tháng 11 2016 lúc 18:39

chữ số tạn cùng là chữ số 0

nếu tính nhanh thì lấy 2015*2016=4062240 có tận cùng là chữ số 0