Tìm số dư trong phép chia số b cho 18.Biết rằng b là số lẻ và B:9 dư 8.Tìm số dư
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm số lớn nhất có ba chữ số mà khi chia số đó cho 75 ta được thương và số dư bằng nhau
Trong một phép chia, số bị chia bằng 86 và số dư bằng 9. Tìm số chia và thương
Trong một phép chia ta được: Thương bằng 6, số dư bằng 49, tổng của số bị chia và dư bằng 595. Tìm số chia và số bị chia
Trong một phép chia số bị chia là 200, số dư là 13. Tìm số chia và thương.
Tìm số tự nhiên b, biết rằng: Nếu chia 129 cho số b ta được số dư là 10 và chia 61 cho số b ta được số dư cũng là 10
Tìm số tự nhiên a,biết rằng: Khi chia số a cho 14 ta được thương là 5 và số dư lớn nhất trong phép chia ấy
1)Gọi số đó là A
A < 1000 => A:75 < 1000 : 75 = 13,333
Vậy chọn số A lớn nhất là A= 75 x 13 + 13 =988
2)Ko bít
3)Tổng của số bị chia và số chia là :
595 - 49 = 546
Số chia là :
546 : ( 6 + 1 ) = 78
Số bị chia là :
546 - 78 = 468
1, Khi chia một STN a cho 4, ta được số dư là 3 còn khi chia cho 9 ta được số dư là 5. Tìm số dư trong phép chia a cho 36
2, Khi chia một STN a cho một STN b ta được thương là 18 số dư là 24. Hỏi thương và số dư thay đổi thế nào thì SBC và SC giảm đi 6 lần
3, Tìm số dư trong phép chia sau:
\(a,2^{1000}:5\)
\(b,2^{1000}:25\)
Bài 1:
Theo đề bài ta có:
\(a=4q_1+3=9q_2+5\) (\(q_1\) và \(q_2\) là thương trong hai phép chia)
\(\Rightarrow\left[\begin{matrix}a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\\a+13=9q_2+5+13=9\left(q_2+2\right)\left(2\right)\end{matrix}\right.\)
Từ (1) và (2) suy ra: \(a+13=BC\left(4;9\right)\)
Mà \(Ư\left(4;9\right)=1\Rightarrow a+13=BC\left(4;9\right)=4.9=36\)
\(\Rightarrow a+13=36k\left(k\ne0\right)\)
\(\Rightarrow a=36k-13=36\left(k-1\right)+23\)
Vậy \(a\div36\) dư \(23\)
Câu 1
Theo bài ra ta có:
\(a=4q_1+3=9q_2+5\)(q1 và q2 là thương của 2 phép chia)
\(\Rightarrow a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\)
và \(a+13=9q_2+5+13=9.\left(q_2+2\right)\left(2\right)\)
Từ (1) và (2) ta có \(a+13\) là bội của 4 và 9 mà ƯC(4;9)=1
nên a là bội của 4.9=36
\(\Rightarrow a+13=36k\left(k\in N\right)\)
\(\Rightarrow a=36k-13\)
\(\Rightarrow a=36.\left(k-1\right)+23\)
Vậy a chia 36 dư 23
Bài 3:
\(a,2^{1000}\div5\)
Ta có:
\(2^{1000}=\left(2^4\right)^{250}=\overline{\left(...6\right)}^{250}=\overline{\left(...6\right)}\)
Vì a có tận cùng là 6
\(\Rightarrow2^{1000}\div5\) dư \(1\)
Cho biết số bị chia, số chia, thương và số dư của một phép chia là 4 số trong các số 2; 3; 9; 27; 81; 243; 567. Tìm số dư của phép chia đó. Trả lời: Số dư của phép chia đó là: a. 9 b. 81 c. 27 d. 2
Tìm số tự nhiên b, biết khi chia 64 cho b thì được thương là 4 và số dư là 12.
Tìm số tự nhiên c, biết khi chia số 83 cho c thì được thương là 5 và số dư là 13.
Tìm số tự nhiên b, biết khi chia b cho 14 thì được thương là 5 và số dư là số lớn nhất có thể có trong phép chia ấy.
Tìm số tự nhiên a, biêt khi chia a cho 17 thì được thương là 6 và số dư là số lớn nhất có thể có trong phép chia ấy.
+)b=(64-12)/4=13
+)c=(83-13)/5=13
+)b=14*5+13=83
+)a=17*6+16=118
1. tìm số tự nhiên a biết rằng a chia cho 37 dự 6,chia cho 31 dư 18, biết rằng thương của hai phép chia bằng nhau ?
2. có hay không số tự nhiên m chia cho 60 dư 28, nhưng chia cho 15 dư 12
3.tìm số bị chia vs số chia, biết rằng phép chia đó có thương là 7 ; số dư là 5. tổng của số bị chia , số chia và số dư là 115
các bạn ơi xin các bạn tội ngiệp cho tôi vài lik e
Tìm số thích hợp điền vào các phép tính sau :
a) ab : c =c (dư 8)- biết là số dư lớn nhất có thể của phép chia này.
b) aa:b=b (dư 7) -biết b là số lẻ
Tìm thương trong phép chia biết số bị chia là số lẻ lớn nhất có ba chữ số khác nhau , số dư là 3 và số dư là số dư lớn nhất có thể có trong phép chia đó
tìm một số biết rằng nếu đem số đó chia cho 9 thì được thương bằng số dư và số dư là số dư lẻ lớn nhất?
Bài 5: Chia số tự nhiên a cho 9 được số dư là 4. Chia số tự nhiên b cho 9 được số dư là 5. Chia số tự nhiên c cho 9 được số dư là 8.
a) Chứng tỏ rằng a + b chia hết cho 9; b) Tìm số dư khi chia b + c cho 9
a) Ta có: a chia 9 dư 4 => đặt a =9n+4
b chia 9 dư 5 => đặt b=9h+5
=> a+b = 9n+4+9h+5 = 9(n+h+1) chia hết cho 9
b) Ta có: c chia 9 dư 8 => đặt c=9m+8
=> b+c = 9h+5+9m+8 = 9(h+m+1) +4
=> b+c chia 9 dư 4