Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn văn hiệp
Xem chi tiết
cc cc
Xem chi tiết
Duc Loi
21 tháng 5 2019 lúc 6:52

Đề bài: tìm tất cả các số nguyên tố p để 8p2+1 và 8p2-1 là số nguyên tố

Trả lời: Đây là dạng toán lớp 6 chứ

B1: Thử các snt p -> khi đạt gtri thỏa mãn

B2: Nếu p> số nt tìm đc ( lớn nhất ) Có dạng j

-> Cm vô lý.

Nguyễn Đỗ Minh Phương
Xem chi tiết
Võ Đông Anh Tuấn
6 tháng 4 2016 lúc 16:52

Bài này cũng tương tự Chào anh hung t, đúng là 3 số anh xét là gần nhất... 
Hic ;(( sao nó lại không nằm trong suy nghĩ đầu tiên??? 
------------------- 
* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa 

* Xét: p # 3 
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3 
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3 

Vậy: 
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3 
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3 
=> 8p+1 là hợp số 
---------- 
Cách khác: 
phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1) 
xét 3 số nguyên liên tiếp: p-1, p, p+1 
p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên) 
=> p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3

Nguyễn Hoàng Nguyên
7 tháng 4 2016 lúc 9:25

Đầu bài thầy cho sai hay sao ý !

Nguyễn Hoàng Nguyên
7 tháng 4 2016 lúc 9:27

Đáng nhẽ đề bài là : TÌm SNT P sao cho 8P-1 và 8P+5 đều là SNT

No Name
Xem chi tiết
Nguyen Duong
Xem chi tiết
tran vinh
31 tháng 7 2021 lúc 18:40

1.ta có: 8p-1 là số nguyên tố (đề bài)

8p luôn luôn là hợp số 

ta có: (8p-1)8p(8p+1) chia hết cho 3 

từ cả 3 điều kiện trên ta có: 8p+1 chia hết cho 3 suy ra 8p+1 là hs

Khách vãng lai đã xóa
trịnh hà quỳnh
Xem chi tiết
Lưu Dung
28 tháng 6 2017 lúc 16:56

là hợp số

trịnh hà quỳnh
29 tháng 6 2017 lúc 14:30

bn Lưu Dung có thể tra lời cụ thể đc ko vậy!!!!!!!!!!!

trịnh hà quỳnh
29 tháng 6 2017 lúc 17:21

trình bày ra đi bn!!!!!!!!!!!!!

Lê Minh Tuấn
Xem chi tiết
Trần Bảo Ngọc
Xem chi tiết
Nguyễn Hoàng Huy
10 tháng 4 2022 lúc 21:33

Bạn tham khảo nhé!

Với p=3 =>8p-1=23 (thỏa mãn)

                 8p+1=25(loại)

Với p khác 3 =>p không chia hết cho 3 =>8p không chia hết cho 3

mà (8p-1)(8p+1)là tích của 3 số tự nhiên liên tiếp 

Theo đề bài :8p-1 >3 (p thuộc N) =>8p-1 không chia hết cho 3 

=> 8p+1 chia hết cho 3

mà 8p+1>3 

=>8p+1 là hợp số 

Vậy 8p+1 là hợp số, 8p-1 là số nguyên tố.

Khách vãng lai đã xóa
Minh Hồng
11 tháng 4 2022 lúc 1:56

TH1: \(p=3\) thì ta có \(8p-1=23\) là số nguyên tố, \(8p+1=25\) là hợp số.

TH2: \(p=3k+1\), ta có \(8p+1=8\left(3k+1\right)+1=24k+9⋮3\)

Vậy trong trường hợp này \(8p-1\) phải là số nguyên tố, còn \(8p+1\) là hợp số.

TH3: \(p=3k+2\), ta có \(8p-1=8\left(3k+2\right)-1=24k+15⋮3\)

Vậy trong trường hợp này \(8p+1\) phải là số nguyên tố, còn \(8p-1\) là hợp số.

Vậy khi \(p\) là số nguyên tố, nếu 1 trong 2 số \(8p-1;8p+1\) là số nguyên tố thì số còn lại là hợp số.

Anh Phuon
Xem chi tiết
khoahoangvip
6 tháng 12 2016 lúc 18:18

Khó quá bạn ơi !

Anh Phuon
7 tháng 12 2016 lúc 22:27

Cũng ko khó lắm