Chứng minh rằng \(14^{8^{2004}}+2\text{ chia hết cho 11}\)
Chứng minh rằng: 14^8^2004 + 10 chia hết cho 11
chứng minh rằng
a. 10^2002 + 8 chia hết cho cả 9 và 2
b. 10^2004 + 14 chia hết cho cả 3 và 2
a ) 10^2002+8=1000...008(có 2001 chữ số 0)
=>chia hết cho 2(tận cìng là 8)
tổng các chữ số 1+0+8=9 chia hết cho 9
=>số chia hết cho 9
b ) 10^2004+14=100...0014(có 2002 chữ số 0)
=>chia hết cho 2(tận cùng là 4)
tổng các chữ số 1+0+1+4=6 chia hết 3
=>số chia hết cho 3
1/
10^2002+8=1000...008(có 2001 chữ số 0)
=>chia hết cho 2(tận cìng là 8)
tổng các chữ số 1+0+8=9 chia hết cho 9
=>số chia hết cho 9
2/
10^2004+14=100...0014(có 2002 chữ số 0)
=>chia hết cho 2(tận cùng là 4)
tổng các chữ số 1+0+1+4=6 chia hết 3
=>số chia hết cho 3
tich nha
Chứng minh rằng:
a) 1033+8 chia hết cho 9 và 2
b) 1010 + 14 chia hết cho 2 và 3
c) ab + cd + eg chia hết cho 11 thì abcdeg chia hết cho 11
d) 2n + 1111...111( n chữ số 1) chia hết cho 3
a) 1033+8=1...0 +8= 1...8 chia hết cho 2
1+8=9 chia hết cho 9
Chứng minh rằng:
a) 102002+8 chia hết cho cả 9 và 2
b) 102004+14 chia hết cho cả 3 và 2
Giải chi tiết rồi mìk tick cho
a. Ta có: 102002+8 = 10...000 (2002 số 0) + 8 = 10...008 (2001 số 0) có 8 tận cùng nên chia hết cho 2
và tổng các chữ số của nó là: 1+0+...+0+0+8=9 nên chia hết cho 9
Vậy 102002+8 chia hết cho 2 và 9.
b. Tương tự: = 10...014 (2002 số 0) có 4 tận cùng nên chia hể cho 2
và tổng các chữ số của nó là: 1+0+...+0+1+4=6 nên chia hết cho 3
Vậy 102004+14 chia hết cho 2 và 3.
a) Chứng minh rằng: (ab+cd+ eg) chia hết cho 11 thì abcdeg chia hết cho 11
b) Chứng minh rằng: 1028 +8 chia hết cho 72
abcdeg =1000ab+100cd+eg =11 (101ab + 11cd )+(ab+cd+eg)
vi ab+cd+eg chia het cho 11 nen abcdeg chia het cho11
a) abcdeg = 10000.ab+100.cd+eg = 9999.ab+99.cd+(ab+cd+eg)
Ta có: 9999.ab và 99.cd luôn chia hết cho 11
Nên nếu (ab+cd+eg) chia hết cho 11 thì abcdeg chia hết cho 11
=> Đpcm
b) Ta có: 72=9.8
1028=10.(103)9 =10.10009 chia hết cho 8 => 1028+8 chia hết cho 8 (1)
Lại có: Tổng các chữ số của 1028+8 là: 1+0+0+...+0+8=9 (28 chữ số 0)
=> 1028+8 chia hết cho 9 (2)
Từ (1) và (2) => 1028+8 chia hết cho 72
bài 1: tìm x biết:
275x chia hết cho5; 25 và 125
Bài 2: chứng minh rằng: 3n-1 chia hết cho 2 (n thuộc N)
Bài 3: chứng minh rằng số dạng aaaaaa chia hết cho 37 037
Bài 4: chứng minh rằng tích 2 số chẵn liên tiếp chia hết cho 8
Bài 5: A=2+22+...+260 chứng minh rằng A chia hết cho 3; và 15
Bài 6:chứng minh n2+n+1 ko chia hết cho 4 và 5
Bài 7: chứng minh ad+cd+ef chia hết cho 11 thì abcdef chia hết cho 11
Bài 1:
a, Từ 1 đến 1000 có bao nhiêu số chia hết cho 5
b, Tổng 1015+ 8 có chia hết cho 9 và 2 ko?
c, Tổng 102010 + 8 có chia hết cho 9 ko?
d, Tổng 102010+ 14 có chia hết cho 3 và 2 ko?
e, Hiệu 102010 - 4 có chia hết cho 3 ko?
Bài 2:
a, Chứng tỏ rằng ab(a+b) chia hết cho 2 (a,b thuộc N)
b, Chứng minh rằng ab + ba chia hết cho 11
c, Chứng minh aaa luôn chia hết cho 37
d, Chứng minh aaabbb luôn chia hết cho 37
e, Chứng minh ab - ba chia hết cho 9 với a > b
c,\(10^{2010}+8\)
\(=100...0+8\)
\(=100...8\)(tổng các chữ số =9)
\(\Rightarrow10^{2010}+8⋮9\)
1a.
Số nhỏ nhất: 5, số lớn nhất 1000
Vậy có: (1000 - 5): 5 + 1 = 200 (số)
1b. 1015 + 8 = 100...0 + 8 = 100...8 chia hết cho 2; 1 + 8 = 9 nên 1000...8 chia hết cho 9
Bài 1 : Chứng minh rằng :
a, ( 5 + 5^2 + 5^3 + .... + 5^100 ) chia hết cho 10
b, (1 + 3 + 3^2 + .... + 3^99 ) chia hết cho 40
c, ( 19^5^2003 + 8^2004 + 5.7^2003 ) chia hết cho 10
d, ( 2^2.n - 1 ) chia hết cho 5
e, ( 19^2005 + 11^2004 ) chia hết cho 10
a) 5+52+53+54+...+5100
= (5+52)+(53+54)+...+(599+5100)
= 30+52.(5+52)+...+598.(5+52)
= 30+52.30+...+598.30
= 30.(1+52+...+598)
Vì 30 chia hết cho 10
=> 30.(1+52+...+598) chia hết cho 10
=> 5+52+53+...+5100 chia hết cho 10
Bai 1
a chứng minh rằng nếu ( ab + cd + eg) chia hết cho 11 thì abcdeg chia hết cho 11
b chứng minh rằng 1028 +8 chia hết cho 72
a,abcdeg = ab.10000+ cd. 100 + eg
= 9999.ab + 99.cd + ab + cd+ eg
=[9999ab +99cd + [ ab + cd + eg]
vi 9999ab +99cd chia het cho 11 va ab + cd + eg chia het cho 11[ theo de bai]
=>dpcm
b] tu bn lam