Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn hito
Xem chi tiết
Nguyen Thuy Dung
Xem chi tiết
Lê Thị Ngọc Minh
27 tháng 11 2017 lúc 11:48

Ta có 

A=x2_6x+11=x2_2x3xx+32+2=(x-3)2+2>=2

=>MIN A=2 khi và chỉ khi x-3=0 hay x=3

B=x2-20x+101=x2-2x10xx+102+1=(x-10)2+1>=1

=>MIN B=1 khi và chỉ khi x-10=0 hay x=10

Nguyen Thuy Dung
27 tháng 11 2017 lúc 12:01

làm nốt hộ mình con C đi

Lê Thị Ngọc Minh
27 tháng 11 2017 lúc 12:40

Ta lại có

C=x2-4xy+5y2+10x-22y+28=(x2+(-2y)2-2x2xy+2x5xx-2x5x2y+52)+(y2_2y+12)+2

  =(x-2y+5)2+(y-1)2+2>=2

=>MIN C=2 khi và chỉ khi x-2y+5=0 và y-1=0 hay x=-3 và y=1

Lâm Hữu
Xem chi tiết
»βέ•Ҫɦαηɦ«
28 tháng 7 2017 lúc 15:06

a) Ta có : x2 - 20x + 101 

= x2 - 20x + 100 + 1

= (x - 10)+ 1

Mà (x - 10)2 lớn hơn hoặc bằng 0 

Nên  (x - 10)+ 1 lớn hơn hoặc bằng 1

=> GTNN của biểu thức là 1 . khi x = 10

Nguyễn Thái Sơn
29 tháng 8 2020 lúc 13:23

b) 4a2+4a+2

=(2a)2+2.2a+1+1

=(2a+1)2+1

Vì (2a+1)2  \(\ge\)0 với mọi x \(\in\)R

=>(2a+1)2+1\(\ge\)1 với mọi x \(\in\)R

dấu "=" xảy ra <=> 2a+1=0  <=> 2a=-1 <=> a= -1/2

Khách vãng lai đã xóa
Nguyễn Thái Sơn
29 tháng 8 2020 lúc 13:28

câu c bạn tham khảo tại link sau nhé ! 

https://h oc 24.vn/hoi-dap/question/394806.html

Khách vãng lai đã xóa
Vũ Thị Vân Anh
Xem chi tiết
Trần Khánh Minh
Xem chi tiết
pham thi thu trang
12 tháng 10 2017 lúc 17:30

\(x^2-6x+11=x^2-2\times3\times x+3^2+2=\left(x-3\right)^2+2\)

vì \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+2\ge2\)

vậy MIN = 2  . dấu = xảy ra <=> x = 3

pham thi thu trang
12 tháng 10 2017 lúc 17:32

\(x^2-20x+101=x^2-2\cdot10\cdot x+10^2+1=\left(x-10\right)^2+1\)

\(\left(x-10\right)^2\ge0\Rightarrow\left(x-10\right)^2+1\ge1\)

vậy Min = 1  . dấu = xảy ra <=> x = 10

Pain Thiên Đạo
22 tháng 12 2017 lúc 20:04

C) \(x^2-4xy+5y^2+10x-22y+28\)

\(\left(x^2-4xy+4y^2+10x-20y+25\right)+\left(y^2-2y+1\right)+2\)

\(\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)>2

Vậy GTNN=2\(\Leftrightarrow X=-3;y=1\)

Lê Thùy Dung
Xem chi tiết
Hỗn Thiên
28 tháng 12 2016 lúc 19:43

C = ( x2 - 4xy + 4y2 ) + 10.(x -2y) + ( y2 -2y + 1) + 27

   = ( x-2y)2 + 2.5.(x-2y) + 25 + (y-1)2 + 2

   = ( x-2y + 5 )2 + (y-1)2 + 2 \(\ge2\)vì \(\left(x-2y+5\right)^2\ge0\forall x,y\) và \(\left(y-1\right)^2\ge0\forall y\)

Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy Min C = 2 \(\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

con cac
Xem chi tiết
Xem chi tiết
๖²⁴ʱんuリ イú❄✎﹏
16 tháng 11 2019 lúc 20:23

C = x2 - 4xy + 5y2 + 10x - 22y + 28

= (x^2 - 4xy + 4y^2) + (10x - 20y) + (y^2 - 2y) + 28

= (x - 2y)^2 + 10(x - 2y) + 25 + (y^2 - 2y + 1) + 2

= (x - 2y)^2 + 2.(x - 2y).5 + 5^2 + (y - 1)^2 + 2

= (x - 2y + 5)^2 + (y - 1)2 + 2

Vì (x−2y+5)^2≥0∀x;y; (y−1)^2≥0∀y nên (x−2y+5)^2+(y−1)^2+2≥2∀x;y

hay C≥2∀x;y

Dấu ''='' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2y-5\\y=1\end{cases}\Rightarrow}\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)

Khách vãng lai đã xóa
Công chúa thủy tề
Xem chi tiết
hya_seije_jaumeniz
17 tháng 7 2018 lúc 10:41

\(R=x^2-4xy+5y^2+10x-22y+28\)

\(R=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)

\(R=\left[\left(x-2y\right)^2+2\left(x-2y\right).5+25\right]+\left(y^2-2y+1\right)+2\)

\(R=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)

Mà  \(\left(x-2y+5\right)^2\ge0\forall x;y\)

      \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow R\ge2\)

Dấu "=" xảy ra khi : 

\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy ...