Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Slendrina
Xem chi tiết
Phạm Thị Thu Ngân
20 tháng 3 2017 lúc 20:05

a) 2x-3=0 <=> x=\(\dfrac{3}{2}\) để \(\left(2x^2-ax+5\right):\left(2x-3\right)\) thì \(2x^2-ax+5=2\)

Thay x= \(\dfrac{3}{2}\) vào \(2x^2-ax+5\), ta được:

\(\dfrac{9}{2}-\dfrac{3}{2}a+5=2\)

<=> \(-\dfrac{3}{2}a=2-5-\dfrac{9}{2}\) <=>a=5

Lưu Hiền
20 tháng 3 2017 lúc 20:07

lười quá ~~

bài 1

vì đa thức bị chia bậc 2, đa thức chia bậc nhất

=> đa thức thương sẽ có dạng bx+c

theo đề ta có

\(2x^2-ax+5=\left(bx+c\right)\left(2x-3\right)+2\\ < =>2x^2-ax+5=2bx^2-3bx+2cx-3c+2\\ < =>2x^2-ax+5=2bx^2-x\left(2c-3b\right)-3c+2\\ < =>\left\{{}\begin{matrix}2x^2=2bx^2\\ax=x\left(2c-3b\right)\\5=2-3c\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}b=1\\c=-1\\a=2c-3b\end{matrix}\right.\\ =>a=2\left(-1\right)-3.1\\ =>a=-5\)

vậy a = -5

bài 2 ko hiểu sao mình ko làm được, chắc sai ở đâu đợi mình làm lại nhé

Phạm Thị Thu Ngân
20 tháng 3 2017 lúc 20:20

Phạm Thik Ngọc Linh
Xem chi tiết
Lê Tài Bảo Châu
17 tháng 8 2019 lúc 8:19

Mình sẽ làm cách chia nha còn bạn mún cách nào thì bảo mình làm lại 

a)

  x^3 +ax+b x^2+2x-2 x-2 x^3+2x^2-2x - -2x^2+(a+2)x+b -2x^2-4x+4 - (a+2+4)x+(b-4)

Để \(x^3+ax+b\)chia hết cho \(x^2+2x-2\)

\(\Leftrightarrow\hept{\begin{cases}a+2+4=0\\b-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-6\\b=4\end{cases}}}\)

Vậy \(\hept{\begin{cases}a=-6\\b=4\end{cases}}\)để \(x^3+ax+b\)chia hết cho \(x^2+2x-2\)

Lê Tài Bảo Châu
17 tháng 8 2019 lúc 8:33

b) dùng phương pháp xét giá trị riêng

Đặt \(f\left(x\right)=ax^3+bx^2+5x-50\)

Ta có: \(f\left(x\right)\)chia hết cho\(x^2+3x-10\)

\(\Rightarrow f\left(x\right)=\left(x^2+3x-10\right).q\left(x\right)\)

\(\Rightarrow f\left(2\right)=\left(2^2+2.3-10\right).q\left(2\right)\)

                 \(=0\)

\(\Leftrightarrow a.2^3+b.2^2+5.2-50=0\)

\(\Leftrightarrow8a+4b-40=0\)

\(\Leftrightarrow4\left(2a+b-10\right)=0\)

\(\Leftrightarrow2a+b=10\left(1\right)\)

Lai có : \(f\left(-5\right)=\left[\left(-5\right)^2+3.\left(-5\right)-10\right].q\left(-5\right)\)

                             \(=0\)

\(\Leftrightarrow a.\left(-5\right)^3+b.\left(-5\right)^2+5.\left(-5\right)-50=0\)

\(\Leftrightarrow-125a+25b-25-50=0\)

\(\Leftrightarrow-125a+25b-75=0\)

\(\Leftrightarrow25\left(-5a+b-3\right)=0\)

\(\Leftrightarrow-5a+b=3\left(2\right)\)

Lấy (1) trừ (2) ta được: \(\left(2a+b\right)-\left(-5a+b\right)=10-3\)

                                 \(\Leftrightarrow7a=7\)

                                 \(\Leftrightarrow a=1\)

Thay a=1 vào (1 ) ta được: b=8

Vậy a=1 và b=8

bảo châu
Xem chi tiết
Lê Tài Bảo Châu
14 tháng 8 2019 lúc 9:56

làm mẫu 1 phần thôi men còn lại tự làm 

giải

a) 

  ax^3+ bx-24 x^2+4x+3 ax-4a ax^3+4ax^2+3ax - -4ax^2+(b-3a)x-24 -4ax^2-16ax-12a - (b-3a+16a)x-(24-12a)

Để \(A\left(x\right)⋮B\left(x\right)\)\(\Leftrightarrow\hept{\begin{cases}b-3a+16a=0\\24-12a=0\end{cases}}\)

                                    \(\Leftrightarrow\hept{\begin{cases}b+13.2=0\\a=2\end{cases}}\)

                                     \(\Leftrightarrow\hept{\begin{cases}b=-26\\a=2\end{cases}}\)

Trịnh Thị Ánh Tuyết
Xem chi tiết
Đặng Thị Phương Anh
Xem chi tiết
Thu Thao
31 tháng 10 2020 lúc 19:26

Gỉar sử \(A:B\) được thương là \(4x+c\)

DO \(A⋮B\) nên \(A:B\) được dư bằng 0

Khi đó

\(4x^3+ax^2+bx+5=\left(4x+c\right)\left(x^2-x+1\right)\)

\(=4x^3+cx^2-4x^2-cx+4x+c\)

\(=4x^3+x^2\left(c-4\right)+x\left(4-c\right)+c\)

Áp dụng đồng nhất thức ta có

\(\left\{{}\begin{matrix}a=c-4\\b=4-c\\c=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-1\end{matrix}\right.\)

Vậy...

Khách vãng lai đã xóa
dũng lê
Xem chi tiết
khanh tran
Xem chi tiết
Le Vi
Xem chi tiết
Nguyễn Thị Hạnh Nhi
Xem chi tiết
Pham Van Hung
25 tháng 11 2018 lúc 15:20

\(ax^3+bx-24=\left(x+1\right)Q\left(x\right)\)(1)

\(ax^3+bx-24=\left(x+3\right)P\left(x\right)\) (2) (P(x),Q(x) là các thương)

Thay x = -1 vào (1) và x = -3 vào (2), ta có: 

\(\hept{\begin{cases}a.\left(-1\right)^3+b.\left(-1\right)-24=0\\a.\left(-3\right)^3+b.\left(-3\right)-24=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}-a-b=24\\-27a-3b=24\end{cases}}\Rightarrow\hept{\begin{cases}-3a-3b=72\\-27a-3b=24\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}-3a-3b-\left(-27a-3b\right)=72-24\\-a-b=24\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}24a=48\\a+b=-24\end{cases}\Rightarrow}\hept{\begin{cases}a=2\\b=-26\end{cases}}\)