số các giá trị nguyên của a thoả mãn
-3 < a/6 < 1/3
2]
cho phân số A= 6n+1/4n+3 [ với N nguyên ]
a] tìm giá trị n NA để A có giá trị là số nguyên
b] tìm giá trị n để A là phân số không rút gọn được
3]
a] so sánh 2 số sau : 4^127 và 81^43
b] tìm số nguyên x thoả mãn 3/1 + 3/3 +3/6 + 3/10 + ... + 3/x.[x + 1] :2 =2015/333
Cho a,b,c là các số thực thoả mãn \(\frac{abc}{a+b+c}=3\) . Tìm giá trị nhỏ nhất của biểu thức:
\(M=\frac{3}{a^2+5}+\frac{5}{b^2+3}+\frac{3}{c^2+3}\)
phân số \(\frac{n}{n-3}\)có giá trị số nguyên thì số giá trị n thoả mãn là?
n sẽ bằng 3 vì 3-3=1 mà n bằng 3 thì sẽ là 3/1=3
n thỏa mãn n thuộc tập hợp các số nguyên N
n lớn hơn hoặc bằng 3 thì phân số sẽ có giá trị là số nguyên
k cho mình nhé!
Những số nào trong các số -4, -3, -2, -1, 0, 1, 2, 3, 4 là giá trị của số nguyên x thỏa mãn đẳng thức : x . (4 + x) = -3 ?
Ta co:
x.(4+ x) = -3
=> x.4+x.x = -3
=> 2.x(2+1) = -3
=> 2.x.3 =-3
=> 2.x =-3:3
=>2.x =-1
=>x =-1:2
Vay x = -1:2
số giá trị hữu tỉ của x thoả mãn
x2((2/3)-5x)=0
tập hợp các giá trị của x thoả mãn {x-1}X{x+2}=0
=> x - 1 = 0 => x = 1
hoặc x + 2 = 0 => x = -2
Vậy: x thuộc {-2;1}
Cho: \(x;y;z\) là các số thực thoả mãn điều kiện: \(\frac{3}{2}x^2+y^2+z^2+yz=1\)
Tìm giá trị lớn nhất của: \(A=x+y+z\)
\(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
Suy ra : \(A^2\le2\Rightarrow A\le\sqrt{2}\)
Vậy Max A = \(\sqrt{2}\) khi \(\hept{\begin{cases}x=y\\x=z\\x+y+z=\sqrt{2}\end{cases}\Leftrightarrow}x=y=z=\frac{\sqrt{2}}{3}\)
Tập hợp các số nguyên x thỏa mãn giá trị tuyệt đối của 2x+3 nhỏ hơn hoặc bằng 5 là ............
Cho các số thực a,b,c thoả mãn (a^2)+(b^2)+(c^2)=2 . Tìm giá trị lớn nhất nhỏ nhất cuả biểu thức M=a+b+c-abc