Tìm x,y thuộc Q
(3x-5/9)^2008+(3y+1,4/5)^2010=0
Tìm x,y thuộc Z:
a, (x-3)^2+(y+2)^2=0
b,2x+2^x+3=136
c,42-3./y-3/=4.(2042-x)^4
d,/x+5/+(3y-6)^2010=0
e,(2x-4)^2008+(y-4)^2008+/x+y+z/=0
g,(3x-6)^2006+(y^2-1)^2008+(x-z)^2100=0
h,8.2^3x.7^y=56^2x.5^x-1
i, x^3-y^3-z^3=3xyz và x^2=2.(y+z) (x,y,z thuộc N*)
1. So sánh: \(2^{30}+3^{30}+4^{30}\) và \(3.24^{10}\)
2. CMR: Nếu \(a=x^3y\); \(b=x^2y^2\); \(c=xy^3\) thì với bất kì số hữu tỉ x và y nào ta cũng có \(ax+b^2-2x^4y^4=0\)
3. Tìm một số có năm chữ số, là bình phương của một số tự nhiên và được viết bằng các chữ số 0;1;2;2;2
4. CMR: \(\left(2007^{2008}-2007^{2001}\right)=10\)
5. Tìm x; y thuộc Q biết \(\left(\dfrac{3x-5}{9}\right)^{2008}+\left(\dfrac{3y+1,4}{5}\right)^{2010}=0\)
Làm trước 1 câu còn lại nhường các bé lớp 7
1/ Ta có: \(3.24^{10}=3.3^{10}.8^{10}=3^{11}.2^{30}=3^{11}.4^{15}< 4^{15}.4^{15}=4^{30}\)
\(\Rightarrow2^{30}+3^{30}+4^{30}>3.24^{10}\)
Lời giải
Gọi số tự nhiên cần tìm là \(\overline{abcde}\)
Ta có: \(\overline{abcde}=t^2\left(t\in N\circledast\right)\)
Dễ dàng xác định được \(t\) là số có 3 chữ số(1)
Số chính phương thì có tận cùng là: \(\left\{0;1;4;5;6;9\right\}\)
Như vậy,\(e\in\left\{0;1\right\}\)(2)
Xét:Với \(\) \(e=0\) thì \(t\) sẽ có tận cùng bằng \(0\)
\(\)\(\circledast\)Với \(t=100\Leftrightarrow t^2=10000\)(loại)
\(\circledast\)Với \(t=110\Leftrightarrow t^2=12100\)(loại)
\(\circledast\) Với \(t=120\Leftrightarrow t^2=14400\)(loại)
\(\circledast\)Với \(t=130\Leftrightarrow t^2=16900\)(loại)
\(\circledast\)Với \(t=140\Leftrightarrow t^2=19600\)(loại)
\(\circledast\)Với \(t>150\) thì \(t^2>22210\)(số lớn nhất có thể lập được) Nên loại
Như vậy,ta có: \(e=1\)
Khi đó \(t\) có tận cùng bằng \(1\) hoặc \(9\)
\(\circledast\) Với \(t=101\Leftrightarrow t^2=10201\)(loại)
\(\circledast\) Với \(t=109\Leftrightarrow t^2=11881\)(loại)
\(\circledast\)Với \(t=111\Leftrightarrow t^2=12321\)(loại)
\(\circledast\)Với \(t=119\Leftrightarrow t^2=14161\)(loại)
\(\circledast\)Với \(t=121\Leftrightarrow t^2=14641\)(loại)
\(\circledast\) Với \(t=129\Leftrightarrow t^2=16641\)(loại)
\(\circledast\)Với \(t=131\Leftrightarrow t^2=17161\)(loại)
\(\circledast\)Với \(t=139\Leftrightarrow t^2=19321\)(loại)
\(\circledast\)Với \(t=141\Leftrightarrow t^2=19881\)(loại)
\(\circledast\)Với \(t=149\Leftrightarrow t^2=22201\)(chọn)
Với \(t>149\) thì \(t^2>22210\)(số lớn nhất có thể lập được nên loại)
Vậy \(\overline{abcde}=22201\)
p/s: T thích mấy kiểu troll người làm như thế này :))Đến lần cuối mới có kết quả đúng ,bắt t mò tìm trong zô zọng
Góp sức câu 5, câu dễ :v
Ta có: \(\left(\dfrac{3x-5}{9}\right)^{2008}\ge0\) với mọi x
\(\left(\dfrac{3y+1,4}{5}\right)^{2010}\ge0\) với mọi x
=> VT \(\ge\) 0 = VP
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{3x-5}{9}=0\\\dfrac{3y+1,4}{5}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{7}{15}\end{matrix}\right.\)
Vậy ...
tìm x, y biết:
\(\left(3x-5\right)^{2008}+\left(5y+3\right)^{2010}<=0\)
\(-\frac{3}{5}\) và \(\frac{5}{3}\) hình như là violympic
Ta có: (3x-5)^2008\(\ge\)0 vói mọi x
(5y+3)^2010\(\ge\)0 với mọi y
=>(3x-5)^2008+(5y+3)^2010\(\ge\)0 với mọi x,y
=>(3x-5)^2008+(5y+3)^2010=0
=>(3x-5)^2008=0=>3x-5=0=>3x=5=>x=5/3
=>(5y+3)^2010=0=>5y+3=0=>5y=-3=>y=-5/3
tìm các số x,y,z biết
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2010}=0\)
Cho x; y Tính x;y biết rằng ( 2x-5)^2008 + (3y+4)^2010 <= 0
Tìm x, y biết : \(\left(\dfrac{3x-5}{9}\right)^{2006}+\left(\dfrac{3y+0.4}{3}\right)^{2008}\)
Tìm x biết: \(^{\left(3x-5\right)^{2008}}\)+ \(^{\left(y^2-1\right)^{2010}}\)+ \(^{\left(x-z\right)^{2012}}\)= 0
Ta có \(\hept{\begin{cases}\left(3x-5\right)^{2008}\ge0\\\left(y^2-1\right)^{2010}\ge0\\\left(x-z\right)^{2012}\ge0\end{cases}}\)mà \(\left(3x-5\right)^{2008}+\left(y^2-1\right)^{2010}+\left(x-z\right)^{2012}=0\)
\(\Rightarrow\hept{\begin{cases}\left(3x-5\right)^{2008}=0\\\left(y^2-1\right)^{2010}=0\\\left(x-z\right)^{2012}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=1;-1\\z=x=\frac{5}{3}\end{cases}}\)
tìm x,y,z thuộc N,biết :
a)A=(3x-5)^2006+(y^2-1)^2008+(x-z)^2100=0
b)B=(2x-1)^2008+(y-2:5)^2008+/x+y-z/=0
Tìm x; y; z:
a) |x - 2| - |2x+3| - x = 0
b) |x - 7| + 2x+5=6
c)(3x-5)2006+(y2-1)2008+(x-z)2010 = 0
d) 2009- |x - 2009| = x
e)(2x-1)2008+(y- \(\frac{2}{5}\))2008+ |x+y - z| =0