Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
The darksied
Xem chi tiết
Nguyễn Bá Thọ
Xem chi tiết
Ngyễn Thị Thùy Chi
22 tháng 7 2016 lúc 18:29

bạn viết rõ được ko

Nguyễn Bá Thọ
22 tháng 7 2016 lúc 18:32

mình viết thừa số 1 ở cuối nhé

Emily
22 tháng 7 2016 lúc 18:44

Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+....+\frac{1}{5^{100}}\)

\(5A=5+\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{99}}\)

\(5A-A=1-\frac{1}{5^{100}}\)

\(4A=1-\frac{1}{5^{100}}\)

\(A=\frac{1-\frac{1}{5^{100}}}{4}\)

\(A=\frac{1}{4}-\frac{1}{4.5^{100}}\)

\(V=4.5^{100}\left(\frac{1}{4}_{ }-\frac{1}{4.5^{100}}\right)+1\)

\(V=\left(4.5^{100}.\frac{1}{4}-4.5^{100}.\frac{1}{4.5^{100}}\right)+1\)

\(V=\left(5^{100}-1\right)+1\)

\(V=5^{100}\)

Nguyễn Thị Thùy Linh
Xem chi tiết
toi la toi toi la toi
Xem chi tiết
soyeon_Tiểu bàng giải
22 tháng 7 2016 lúc 18:07

Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(5A-A=\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\right)\)

\(4A=1-\frac{1}{5^{100}}\)

\(A=\frac{1-\frac{1}{5^{100}}}{4}\)

\(A=\frac{1}{4}-\frac{1}{5^{100}}:4\)

\(A=\frac{1}{4}-\frac{1}{5^{100}.4}\)

=> \(V=4.5^{100}.\left(\frac{1}{4}-\frac{1}{5^{100}.4}\right)+1\)

\(V=\left(4.5^{100}.\frac{1}{4}-4.5^{100}.\frac{1}{5^{100}.4}\right)+1\)

\(V=\left(5^{100}-1\right)+1\)

\(V=5^{100}\)

Phúc Crazy
Xem chi tiết
tuandung2912
2 tháng 4 2023 lúc 21:34

1+1=3 :)))

Nguyễn Đức Hiếu
Xem chi tiết
Fudo
4 tháng 5 2019 lúc 21:13

\(4\cdot5^{100}\cdot\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\right)+1\)

\(=4\cdot\left(\frac{5^{100}}{5}+\frac{5^{100}}{5^2}+\frac{5^{100}}{5^3}+...+\frac{5^{100}}{5^{100}}\right)+1\)

\(=4\cdot\left(5^{99}+5^{98}+5^{97}+...+1\right)+1\)

\(\text{Đặt }S=5^{99}+5^{98}+5^{97}+...+1\)

\(5S=5^{100}+5^{99}+5^{98}+...+5\)

\(5S-S=5^{100}-4\)

\(4S=5^{100}-4\)

\(S=\frac{5^{100}-4}{4}\)

\(\text{Quay lại bài toán ta có : }\)

 \(4\cdot\left(\frac{5^{100}}{5}+\frac{5^{100}}{5^2}+\frac{5^{100}}{5^3}+...+\frac{5^{100}}{5^{100}}+1=\right)\)        \(4\cdot\left(\frac{5^{100}-4}{4}\right)+1\)

\(=5^{100}-4+1\)

\(=5^{100}-3\)

                                  \(\text{Mình nghĩ chắc cách làm này đúng rồi đó ! Bạn tham khảo nha ! Bài mình tự nghĩ đó ! Nếu có sai sót gì bạn tự chỉnh nha !}\)

Nguyễn Đức Hiếu
4 tháng 5 2019 lúc 21:18

bn giải thích cho mk đoạn \(5S-S=5^{100}-4\)đc ko sao lại trừ 4

Fudo
4 tháng 5 2019 lúc 21:34


Sorry ! Mình làm sai đoạn cuối ! Mình làm lại nha !

\(4\cdot5^{100}\cdot\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\right)+1\)

\(=4\cdot\left(\frac{5^{100}}{5}+\frac{5^{100}}{5^2}+\frac{5^{100}}{5^3}+...+\frac{5^{100}}{5^{100}}\right)+1\)

\(=4\cdot\left(5^{99}+5^{98}+5^{97}+...+1\right)+1\)

\(\text{Đặt }S=5^{99}+5^{98}+5^{97}+...+1\)

\( 5S=5^{100}+5^{99}+5^{98}+...+5\)

\(5S-S=\left(5^{100}+5^{99}+5^{98}+...+5\right)-\left(5^{99}+5^{98}+5^{97}+...+1\right)\)( Từ đó ta thấy chung các thừa số => ta xóa các thừa số đó đi )

\(S=5^{100}+5-1\)

\(S=5^{100}+4\)

\(\text{Quay lại bài toán ta có : }\)

\(4\cdot( \frac{5^{100}}{5}+\frac{5^{100}}{5^2}+\frac{5^{100}}{5^3}+...+\frac{5^{100}}{5^{100}}\text{ )}+1=4\cdot\frac{5^{100}+4}{4}+1\)

\(=5^{100}+4+1\)

\(=5^{100}+5\)

Anh Dao Tuan
Xem chi tiết
Phạm Văn Anh Vũ
Xem chi tiết
Phạm Văn Anh Vũ
10 tháng 6 2018 lúc 16:05

\(A=2\frac{1}{2}\)

Phạm Văn Anh Vũ
Xem chi tiết