Tìm số nguyên tố p sao cho p+1 là tổng các số tự nhiên liên tiếp bắt đầu từ 1
1 .tìm số nguyên tố p sao cho p+2 và p+4 cũng là số nguyên tố
2, tìm 4 số nguyên tố liên tiếp sao cho tổng của chúng cũng là số nguyên tố
3, tìm hai số tự nhiên lien tiếp sao cho tổng và tích của chúng cũng là số nguyên tố
Câu 1:* Nếu p=2 => p+2=2+2=4 là hợp số (trái với đề bài)
* Nếu p=3 => p+2=3+2=5 là số nguyên tố
=> p+4=3+4=7 là số nguyên tố
=> p=3 thỏa mãn đề bài
* Nếu p là số nguyên tố; p>3 => p có dạng 3k+1 hoặc 3k+2 (k ∈ N*)
* Nếu p=3k+1 => p+2=3k+1+2=3k+3=3(k+1)
Vì 3 ⋮ 3 => 3(k+1) ⋮ 3 => p+2 ⋮ 3, mà p+2 là số nguyên tố lớn hơn 3 => p+2 là hợp số (trái với đề bài)
* Nếu p=3k+2 => p+4=3k+2+4=3k+6=3k+3.2=3(k+2)
Vì 3 ⋮ 3 => 3(k+2) ⋮ 3 => p+4 ⋮ 3, mà p+4 là số nguyên tố lớn hơn 3 => p+4 là hợp số (trái với đề bài)
Vậy p=3 thỏa mãn đề bài
Câu 1:Tìm các số nguyên tố p và q sao cho 7p+q và p.q+11 cũng là các số nguyên tố.
Câu 2:
a) Tìm hai số tự nhiên a;b sao cho:
a + 2b = 48, ƯCLN(a,b) + 3. BCNN(a,b) = 114
b)Tìm các số nguyên n sao cho n2 + 1 chia hết cho cho n-1
Câu 2: Cho dãy số tự nhiên liên tiếp bắt đầu kể từ 1 lập thành từng nhóm như sau:
(1), (2:3), (4;5;6), (7;8;9;10), (11;12;13;14;15),...
Hỏi số đầu tiên trong nhóm thứ 100 là số bao nhiêu?
Tìm chữ số a sao cho số aaa viết được thành tổng các số stự nhiên liên tiếp bắt đầu từ số 1
kí hiệu n! là tích n số tự nhiên liên tiếp bắt đầu từ 1. Tìm số tự nhiên n nhỏ nhất sao cho n!+1 là hợp số.
1. Tìm 4 số nguyên tố liên tiếp , sao cho tổng của chúng là số nguyên tố
2.Tổng của 2 số nguyên tố có thể bằng 2003 hay không ?
3. Tìm 2 số tự nhiên, sao cho tổng và tích của chúng đều là số nguyên tố.
1. 2,3,5,7:2+3+5+7=17(nguyên tố)
2.Có: 2001+2
3.2 và 1:2+1=3(nguyên tố);1.2=2(nguyên tố)
bài 9:Tìm số nguyên tố p sao cho:
a)p+16;p+38 cũng là các số nguyên tố
b)p+28;p+44 cũng là các số nguyên tố
c)p+26;p+42;p+48'p+74 là các số nguyên tố
bài 10:a)tổng 3 số tự nhiên liên tiếp là số nguyên tố hay hợp số?
b)tổng 3 số tự nhiên lẻ liên tiếp là số nguyên tố hay hợp số?
9 Tìm số nguyên tố p sao cho :
a) Nếu p = 2
=> p + 16 = 2 + 16 = 18 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 16 = 3 + 16 = 19 (số ngyên tố)
=> p + 38 = 3 + 38 = 41 (số nguyên tố)
=> p = 3 (chọn)
Nếu p > 3
=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)
Nếu p = 3k + 1
=> p + 38 = 3k + 1 + 38 = 3k + 39 = 3(k + 13) \(⋮\)3
=> p = 3k + 1 (loại)
Nếu p = 3k + 2
=> p + 16 = 3k + 2 + 16 = 3k + 18 = 3(k + 6) \(⋮\)3
=> p = 3k + 2 (loại)
Vậy p = 3
b) Nếu p = 2
=> p + 28 = 2 + 28 = 30 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 28 = 3 + 28 = 31 (số ngyên tố)
=> p + 44 = 3 + 44 = 47 (số nguyên tố)
=> p = 3 (chọn)
Nếu p > 3
=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)
Nếu p = 3k + 1
=> p + 44 = 3k + 1 + 44 = 3k + 45 = 3(k + 15) \(⋮\)3
=> p = 3k + 1 (loại)
Nếu p = 3k + 2
=> p + 28 = 3k + 2 + 28 = 3k + 30 = 3(k + 10) \(⋮\)3
=> p = 3k + 2 (loại)
Vậy p = 3
c) Nếu p = 2
=> p + 26 = 2 + 26 = 28 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 42 = 3 + 42 = 45 (hợp số)
=> p = 3 (loại)
Nếu p = 5
=> p + 26 = 5 + 26 = 31 (số nguyên tố)
=> p + 42 = 5 + 42 = 47 (số nguyên tố)
=> p + 48 = 5 + 48 = 53 (số nguyên tố)
=> p + 74 = 5 + 74 = 79 (số nguyên tố)
=> p = 5 (chọn)
Nếu p > 5
=> p = 5k + 1 hoặc p = 5k + 2 hoặc p = 5k + 3 hoặc p = 5k + 4 (\(k\inℕ^∗\))
Nếu p = 5k + 1
=> p + 74 = 5k + 1 + 74 = 5k + 75 = 5(k + 15) \(⋮\)5
=> p + 74 là hợp số
=> p = 5k + 1 (loại)
Nếu p = 5k + 2
=> p + 48 = 5k + 2 + 48 = 5k + 50 = 5(k + 10) \(⋮\)5
=> p + 48 là hợp số
=> p = 5k + 2 (loại)
Nếu p = 5k + 3
=> p + 42 = 5k + 3 + 42 = 5k + 45 = 5(k + 9) \(⋮\)5
=> p + 42 là hợp số
=> p = 5k + 3 (loại)
Nếu p = 5k + 4
=> p + 26 = 5k + 4 + 26 = 5k + 30 = 5(k + 6) \(⋮\)5
=> p + 26 là hợp số
=> p = 5k + 4 (loại)
Vậy p = 5
10) a) Gọi 3 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2
Ta có : a + a + 1 + a + 2 = 3a + 6
= 3(a + 2) \(⋮\)3
=> Tổng của 3 số tự nhiên liên tiếp là hợp số
b) Gọi 3 số tự nhiên lẻ liên tiếp là : a ; a + 2 ; a + 4
=> Ta có : a + a + 2 + a + 4 = 3a + 6
= 3(a + 2) \(⋮\)3
=> Tổng của 3 số tự nhiên lẻ liên tiếp là hợp số
1 người ta viết các số tự nhiên liên tiếp bắt đầu từ 1 đến 2014 liền nhau thành 1 số tự nhiên P(P=12345678910111213.........20132014) hỏi số tự nhiên P có bao nhiêu chữ số
2 cho n là số nguyên tố >3 hỏi n2+2015 là số nguyên tố hay hợp số
3 tìm các chữ số x,y sao cho 1994xy chia hết cho 72
4 tìm các số tự nhiên x,y sao cho \(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
5 tìm các số tự nhiên a;b;c;d nhỏ nhất sao cho \(\frac{a}{b}=\frac{5}{14};\frac{b}{c}=\frac{21}{28};\frac{c}{d}=\frac{6}{11}\)
1/ P = 123456....20132014
Từ 1 - 9 có 9 chữ số
từ 10 -99 có: [[99-10]: 1 + 1]x 2 = 180 chữ số
từ 100 - 999 có: [[999-100]: 1 + 1] x 3 = 2700 chữ số
từ 1000 - 2014 có: [[2014 - 1000]: 1 + 1] x 4 = 4060 chữ số
=> P có: 4060 + 2700 + 180 + 9 = 6949 chữ số
2/
n là số n tố > 3 => n lẻ => 22 lẻ
=> n2+ 2015 chia hết cho 2 nên là hợp số
3/
Gọi 1994xy là A. A chia hết cho 72 => A chia hết cho 8 và 9
Vì A chia hết cho 8 nên A chẵn => y E {0; 2; 4; 6; 8}
* nếu y = 0 => x = 4
* nếu y = 2 => x = 2
* nếu y = 4 => x E {0; 9}
* nếu y = 6 => x = 7
* nếu y = 8 => x = 5
Vậy [x,y] = [0;4],[2;2],[4;0 và 9],[6;7],[8;5]
4/
x/9 - 3/ y = 1/18
=> 2x/18 - 3/y = 1/18
=> 3/y = 1/18 - 2x/18
=> 3/y = 1-2x/18
=> y - 2xy = 54=> y[1-2x] = 54
mà 1 - 2x lẻ nên y chẵn
mà y thuộc ước 54 => y E {-2;2;-6;6;-18;18;-54;54}
y | -2 | 2 | -6 | 6 | -18 | 18 | -54 | 54 |
1-2x | -27 | 27 | -9 | 9 | -3 | 3 | -1 | 1 |
2x | 28 | -26 | 10 | -8 | 4 | -2 | 2 | 0 |
x | 14 | -13 | 5 | -4 | 2 | -1 | 1 | 0 |
vậy: [x,y] = [14;-2],[2;-13],[-6;5],[6;-4],[-18;2],[18;-1],[-54;1],[54;0]
5/
Theo đề bài, ta có:
b E BC[14, 21]
mà b nhỏ nhất nên b = 42
=> 14a = 42 . 5
=> a = 15;
=> 21c = 28 . 42
=> c = 56;
từ đó suy ra
6d = 11 . 56
=> d = 308/3
=> d k là số tự nhiên. Vậy a,b,c,d E tập rỗng
tìm số tự nhiên có 3 chữ số giống nhau biết rằng số đó viết thành tổng các số tự nhiên liên tiếp bắt đầu từ 1
gọi số cần tìm là aaa (a lớn hơn 0 và nhỏ hơn 10)
theo bài ra ta có 1+ 2+ 3 +... + n = aaa (n là số tự nhiên)
=> n.(n+1) : 2 = a.111
=> n.(n+1) = 2.a.3.37
ta chọn a từ 1 đến 9 sao cho tích 2.a.3.37 phân tích được thành tích của 2 số tự nhiên liên tiếp
=> chỉ có a = 6 thoả mãn
vậy số cần tìm là 666
vì là số có 3 chữ số giống nhau nên mk đặt A = aaa đương nhiên aaa lớn hơn 100 và nhỏ hơn 999 [vì là số có 3 chữ số]
theo đề bài ta có:1 + 2 + 3 + .................+ n = aaa [ n và a là số tự nhiên]
suy ra n*[n+1] /2 = a *111 [gợi ý nhé tính tổng dãy số ta lấy số đầu cộng số cuối * số số hạng /2] mà [ n -1] / 1 +1 = n]
n*[n+1] = 2 * a*3*37 [ mk tách 111 ra thui nha]
và mk chọn a từ 1 đến 9 sao cho tích 2 * 1 * 3* 37 là 2 số tự nhiên liên tiếp
vậy chỉ có a= 6 nên số cần tìm là 666
lưu ý cái mk cho trong ngoặc là gợi ý để bạn hiểu thôi nha
a,tìm n \(\in\) N để 18n+3 chia hết cho 7
b, tìm số tự nhiên có 3 chữ số như nhau biết rằng số đó có thể viết được dưới dạng tổng các số tự nhiên liên tiếp bắt đầu từ 1
c,chứng minh rằng với mọi số tự nhiên n thì 5n+8 và 8n +13 là hai số nguyên tố cùng nhau