Tìm x,y để biểu thức đạt GTLN
2 - |x+1| +|y|
tìm x,y để biểu thức đạt GTNN và GTNN là bao nhiêu
C=\(\frac{30}{4x-4x^2-6}\)
tìm x,y để biểu thức đạt GTLN và GTLN là bao nhiêu
E=\(\frac{1000}{x^2+y^2-20\left(x+y\right)+2210}\)
\(C=\frac{30}{4x-4x^2-6}=\frac{-30}{4x^2-4x+6}=\frac{-30}{\left(2x-1\right)^2+5}\)
Vì \(\left(2x-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2+5\ge5\Rightarrow\frac{1}{\left(2x-1\right)^2+5}\le\frac{1}{5}\Rightarrow C=\frac{-30}{\left(2x-1\right)^2+5}\ge\frac{-30}{5}=-6\)
Dấu "=" xảy ra khi x=1/2
Vậy Cmin=-6 khi x=1/2
\(E=\frac{1000}{x^2+y^2-20x-20y+2210}=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\)
Vì \(\left(x-10\right)^2\ge0;\left(y-10\right)^2\ge0\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2\ge0\)
\(\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2+2010\ge2010\)
\(\Rightarrow\frac{1}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1}{2010}\)
\(\Rightarrow E=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1000}{2010}=\frac{100}{201}\)
Dấu "=" xảy ra khi x=y=10
Vậy Emax = 100/201 khi x=y=10
Ta có: \(E=\frac{1000}{x^2+y^2-20x-20y+2210}=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\)
Vì\(\left(x-10\right)^2\ge0;\left(y-10\right)^2\ge0\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2\ge0\)
\(\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2+2010\ge2010\)
\(\Rightarrow\frac{1}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1}{2010}\)
\(\Rightarrow E=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1000}{2010}=\frac{100}{201}\)
Dấu "=" xảy ra khi \(x=y=10\)
Vậy Emax\(=\frac{100}{201}\)khi \(x=y=10\)
tìm x,y để biểu thức đạt GTLN và GTLN là bao nhiêu
G=\(\frac{2012}{x^2+\left(x-2y\right)^2-2\left(x-2y\right)-4x+2018}\)
* GTLN
Ta co: \(x^2+\left(x-2y\right)^2-2\left(x-2y\right)-4x+2018\) \(=x^2-4x+4+\left(x-2y\right)^2-2\left(x-2y\right).1+1+2013\) \(=\left(x-2\right)^2+\left(x-2y-1\right)^2+2013\)Vì \(\left(x-2\right)^2\ge0,\forall x\) \(\left(x-2y-1\right)^2\ge0,\forall x\)\(\Rightarrow\left(x-2\right)^2+\left(x-2y-1\right)^2\ge0\)\(\Rightarrow\left(x-2\right)^2+\left(x-2y-1\right)^2+2013\ge2013\)
\(\Rightarrow\frac{2012}{\left(x-2\right)^2+\left(x-2y-1\right)^2+2013}\le\frac{2012}{2013}\)
\(\Rightarrow G\le\frac{2012}{2013}\)
Vậy Max G= 2012/2013 tại \(\hept{\begin{cases}x-2=0\\x-2y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\2-2y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}}\)
các bạn ơi giúp mình với
Tìm x để biểu thức sau đạt GTNN
M= |x+1| + |x+2| + |x+3| + |x+4| + |x+5|
Tìm GTLN của
-3|x-4/5| - |y+5/7| + 1/2
Cho biểu thức:
B=\(3xy^2\left(x+1\right)-x^2y\left(3y-1\right)-xy\left(3y+x\right)+2x\left(\cdot1-x\right)+2y\left(1-y\right)-2\left(x+y-2016\right)\)\
a) Rút gọn B
b) Tìm cặp số (x;y) để B đạt GTLN và tìm GTLN đó
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Cho biểu thức P =2.|x| 33.|x|−1 tìm X thuộc Z để P đạt GTLN. Tìm GTLN đóTìm x thuộc Z để P có giá trị là 1 số tự nhiê
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
Tìm x để biểu thức M=3/(2x^2-3x+4) đạt GTLN. Khi đó hãy tìm GTLN của biểu thức M.
tính giá trị của x để biểu thức \(A=\frac{x^2}{x^2+x+1}\) đạt GTLN. Tìm GTLN đó.