Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yến Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 8 2021 lúc 0:03

Xét ΔADB và ΔBCA có 

AD=BC

\(\widehat{DAB}=\widehat{CBA}\)

AB chung

Do đó: ΔADB=ΔBCA

Suy ra: DB=CA

Xét ΔACD và ΔBDC có

AC=BD

DC chung

AD=BC

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ADC}=\widehat{BCD}\)

Xét tứ giác ABCD có 

\(\widehat{DAB}+\widehat{ABC}+\widehat{ADC}+\widehat{BCD}=360^0\)

\(\Leftrightarrow2\cdot\left(\widehat{DAB}+\widehat{ADC}\right)=360^0\)

\(\Leftrightarrow\widehat{DAB}+\widehat{ADC}=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên AB//CD

Xét tứ giác ABCD có AB//CD

nên ABCD là hình thang

mà AC=BD

nên ABCD là hình thang cân

Đào Ngọc Ánh
Xem chi tiết
Oo Bản tình ca ác quỷ oO
5 tháng 9 2016 lúc 20:48

Kẻ .BN vuông AD, BM vuông CD 
Xét tam giác vuông BNA và BMD có 
+ AB = BC 
+ BNA = 1800 - BAD = 700 nên BAN = BCD = 700
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn) 
Suy ra : BN = BM => BD là phân giác góc D 
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (1800 - 1100) :2 = 350 
=>ADC = 700
Do ADC + BAD = 1800 => AB song song CD 
VÀ BCD = ADC =700
=> tứ giác ABCD là hình thang cân (đpcm)

chúc bạn học giỏi!! ^^

ok mk nhé!! 3564774734563476576855957234234342342323435345345456465465475676578658563463434

Chi Nguyễn
Xem chi tiết
Ngô Lê Ánh Linh
18 tháng 10 2020 lúc 9:35

Xét \(\Delta BAD\)và \(\Delta ABC\)có:

\(\widehat{A}=\widehat{B}\)

\(AD=BC\)

\(AB\)chung

\(\Rightarrow\Delta BAD=\Delta ABC\left(c.g.c\right)\)

\(\Rightarrow AC=BD\)(2 cạnh t.ư)

=>tứ giác ABCD là HTC

Khách vãng lai đã xóa
ミ★Ƙαї★彡
18 tháng 10 2020 lúc 11:03

A B C D

Cách 1 : Kẻ thêm đường phụ AC 

Và đường phụ BD 

Xét tam giác ADC và tam giác ABC ta có : 

AC chung 

AD = BC (gt)

^A = ^B (gt) 

=> tam giác ADC = tam giác ABC 

=> AB = DC ( 2 cạnh tương ứng bằng nhau ) 

hay 2 góc kề cạnh đáy bằng nhau => ABCD là hình thang 

Cách 2 : Ta có : AD = BC gt 

=> 2 cạnh bên bằng nhau Vậy ABCD là hình thang :)) 

Khách vãng lai đã xóa
Nguyễn Thụy Anh Thư
Xem chi tiết
Nguyễn Khả Duy
Xem chi tiết
Huỳnh Hoàng Châu
Xem chi tiết
Hoa nguyen thi
Xem chi tiết
Hoa nguyen thi
31 tháng 12 2015 lúc 9:24

 Kẻ .BN vuông AD, BM vuông CD 
Xét tam giác vuông BNA và BMD có 
+ AB = BC 
+ BNA = 180* - BAD = 70* nên BAN = BCD = 70* 
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn) 
Suy ra : BN = BM => BD là phân giác góc D (đpcm) 
b/ 
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (180*-110*) :2 = 35* 
=>ADC = 70* 
Do ADC + BAD = 180* => AB song song CD 
VÀ BCD = ADC =70* 
=> tứ giác ABCD là htc (đpcm)

Hoa nguyen thi
31 tháng 12 2015 lúc 9:25

 Kẻ .BN vuông AD, BM vuông CD 
Xét tam giác vuông BNA và BMD có 
+ AB = BC 
+ BNA = 180* - BAD = 70* nên BAN = BCD = 70* 
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn) 
Suy ra : BN = BM => BD là phân giác góc D (đpcm) 
b/ 
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (180*-110*) :2 = 35* 
=>ADC = 70* 
Do ADC + BAD = 180* => AB song song CD 
VÀ BCD = ADC =70* 
=> tứ giác ABCD là htc (đpcm)

hoangtuvi
19 tháng 9 2021 lúc 8:09

a﴿ Kẻ BN vuông AD, BM vuông CD

Xét tam giác vuông BNA và BMD có

: AB = BC ; góc BNA = 180 độ

‐ góc BAD = 70 độ

nên góc BAN = góc BCD = 70 độ

=> tam giác BMD = tam giác BND ﴾cạnh huyền ‐ góc nhọn﴿

=> BN = BM => BD là phân giác góc D

b﴿ Nối B vs D, do AB = AD nên tam giác ABD cân tại A

khi đó góc ADB = ﴾180 ‐110) :2= 35 độ

=> góc ADC = 70 Do góc ADC + góc BAD = 180 => AB // CD

Và góc BCD = góc ADC = 70 độ

=> ABCD là hình thang cân

Nguyễn Trần Mỹ Hòa
Xem chi tiết
Cố lên Tân
5 tháng 7 2015 lúc 8:46

nam cao copy tại https://vn.answers.yahoo.com/question/index?qid=20120905071415AAmqNM6 

Nguyễn Nam Cao
5 tháng 7 2015 lúc 8:45

a, Kẻ .BN vuông AD, BM vuông CD 
Xét tam giác vuông BNA và BMD có 
+ AB = BC 
+ BNA = 180* - BAD = 70* nên BAN = BCD = 70* 
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn) 
Suy ra : BN = BM => BD là phân giác góc D (đpcm) 
b/ 
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (180*-110*) :2 = 35* 
=>ADC = 70* 
Do ADC + BAD = 180* => AB song song CD 
VÀ BCD = ADC =70* 
=> tứ giác ABCD là htc (đpcm)

Hoa nguyen thi
31 tháng 12 2015 lúc 9:15

 tứ giác ABCD có góc A + góc C = 180 độ 
nên tứ giác ABCD nội tiếp đường tròn 
nên góc ADB = ACB ( 2 góc cùng chắn cung AB) 
Mà góc ACB = BAC ( tam giác ABC cân tại B do AB = BC ) 
và góc BAC = BDC ( cùng chắn cung BC) 
==>> góc ADB = BDC (1) 
nên DB là tia phân giác của góc D 

Ta có góc ADB = ABD ( tam giác ADB cân tại A do AD = AB ) (2) 
Từ (1), (2) ta suy ra góc ABD = BDC 
mà 2 góc này ở vị trí so le trong so với 2 đoạn AB và CD 
do đó AB // CD 
==> ABCD là hình thang 
mà AD = BC nên ABCD là hình thang cân 

Phạm Kim Tuyến
Xem chi tiết
Phạm Kim Tuyến
1 tháng 11 2021 lúc 19:31

Help me please 😭

Minh Anh
1 tháng 11 2021 lúc 19:34

tham khảo

a) Ta có: (F là trung điểm của AD)

(E là trung điểm của BC)

mà AD=BC(Hai cạnh đối trong hình bình hành ABCD)

nên AF=BE

Xét tứ giác AFEB có 

AF//BE(AD//BC, F∈AD, E∈BC)

AF=BE(cmt)

Do đó: AFEB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Ta có: (gt)

mà (F là trung điểm của AD)

nên AB=AF

Hình bình hành AFEB có AB=AF(cmt)

nên AFEB là hình thoi(Dấu hiệu nhận biết hình thoi)

⇒Hai đường chéo AE và BF vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)

hay AE⊥BF(đpcm)

b) Ta có: AFEB là hình thoi(cmt)

nên AF=FE=EB=AB và (Số đo của các cạnh và các góc trong hình thoi AFEB)

hay 

Xét ΔFEB có FE=EB(cmt)

nen ΔFEB cân tại E(Định nghĩa tam giác cân)

Xét ΔFEB cân tại E có (cmt)

nên ΔFEB đều(Dấu hiệu nhận biết tam giác cân)

⇒(Số đo của một góc trong ΔFEB đều)

Ta có: AB//FE(hai cạnh đối trong hình thoi ABEF)

nên (hai góc đồng vị)

hay 

Ta có: tia FE nằm giữa hai tia FB,FD

nên 

(1)

Ta có: AD//BC(hai cạnh đối trong hình bình hành ABCD)

nên (hai góc trong cùng phía bù nhau)

hay (2)

Từ (1) và (2) suy ra 

Xét tứ giác BFDC có 

FD//BC(AD//BC, F∈AD)

nên BFDC là hình thang có hai đáy là FD và BC(Định nghĩa hình thang)

Hình thang BFDC có (cmt)

nên BFDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)