5x + 5x + 2 + 5x + 4 = 3255
Tìm x
a. P=(5x−1)2+2(1−5x)(4+5x)+(5x+4)2P=(5x−1)2+2(1−5x)(4+5x)+(5x+4)2
b. Q=(x−y)3+(y+x)3+(y−x)3−3xy(x+y)
Giải phương trình:
(5x+1)/(x^2+5) + (5x+2)/(x^2+4) + (5x+3)/(x^2+3) + (5x+4)/(x^2+2) = -4
Giải phương trình:
(5x+1)/(x^2+5) + (5x+2)/(x^2+4) + (5x+3)/(x^2+3) + (5x+4)/(x^2+2) = -4
Rút gọn:
a)(5x-4)(5x+4)-(5x-4)2
b)(5x+3)2-(4x-1)2-(9x2+8)
c)2(x-5y)(x+5y)+(x+5y)2+(x-5y)2
a, \(\left(5x-4\right)\left(5x+4\right)-\left(5x-4\right)^2=\left(25x^2-16\right)-\left(25x^2-40x+16\right)=40x-32\)
b,\(\left(5x+3\right)^2-\left(4x-1\right)^2-\left(9x^2+8\right)=\left(x+4\right)\left(9x-2\right)-\left(9x^2+8\right)\)
\(=9x^2+34x-8-\left(9x^2+8\right)=34x\)
c,\(2\left(x-5y\right)\left(x+5y\right)+\left(x+5y\right)^2+\left(x-5y\right)^2=\left(2x\right)^2=4x^2\)
Tính : x^5 - 5x^4 + 5x^3 -5x^2 + 5x -1 với x= 4
Tình giá trị A= 5x^5 -5x^4-5x^3-5x^2+5x-1 tại x =4
Lời giải:
Tại $x=4$ thì:
\(A=5(x^5-x^4+x^3-x^2+x-1)-1\)
\(=(x+1)(x^5-x^4+x^3-x^2+x-1)-1=x^6+1-1=x^6\)
\(=4^6=4096\)
x^5-5x+5x^3-5x^2+5x-1 với x=4
Tại \(x=4\)thì:
\(x^5-5x^4+5x^3-5x^2+5x-1\)
= \(x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-1\)
= \(x^5-x^4-x^4+x^4+x^3-x^3-x^2+x^2+x-1\)
= \(3\)
mình chỉnh lại đề nhé:
Do: \(x=4\)\(\Rightarrow\)\(x+1=5\)
\(x^5-5x^4+5x^3-5x^2+5x-1\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-1\)
\(=x-1\)
\(=4-1=3\)
A=x^5-5x^4+5x^3-5x^2+5x-1 tại x=4 tính giá trị
rút gọn biểu thức
a. (5x+1)^2+2(5x-1)(5x+1)+(5x+1)^2
b.(x^2+8)(x+4)-(x+4)(x^2-4x+16)