Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Đức Trung
Xem chi tiết
Bờ lều bờ lếu
Xem chi tiết
Incursion_03
1 tháng 4 2019 lúc 22:40

*Max

Có: \(x^2+4\ge4x\)

        \(y^2+4\ge4y\)

      \(z^2+4\ge4z\)

\(\Rightarrow x^2+y^2+z^2+12\ge4\left(x+y+z\right)\)\(\Rightarrow x+y+z\le\frac{x^2+y^2+z^2+12}{4}\)

Lại có \(xy+yz+zx\le x^2+y^2+z^2\)(Auto chứng minh)


Cộng 2 vế của bdtd lại ta đc \(x+y+z+xy+yz+zx\le\frac{5\left(x^2+y^2+z^2\right)+12}{4}\)

                                                                                                     \(=\frac{5.12+12}{4}=18\)

"=" KHI x = y= z = 2

*Min : ta có : \(12+2\left(xy+yz+zx\right)\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

                                                                      \(=\left(x+y+z\right)^2\ge0\)

\(\Rightarrow xy+yz+zx\ge-6\)

Dấu "=" xảy ra <=> x + y + z = 0

Với các giá trị trên ta đc \(x+y+z+xy+yz+zx\ge0-6=-6\)

Dấu "=" <=> x + y + z = 0 và x+ y2 + z2 = 12

Bờ lều bờ lếu
2 tháng 4 2019 lúc 23:35

bạn ơi mình giải thế này thì sao nhỉ:

đặt x+y+z=a=> \(a^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

=> \(xy+yz+zx=\frac{a^2-\left(x^2+y^2+z^2\right)}{2}\ge\frac{a^2-12}{2}\)

\(\Rightarrow P\ge a+\frac{a^2-12}{2}\ge-\frac{13}{2}\)( dùng hằng đẳng thức c/m)

dấu " =" <=> \(\hept{\begin{cases}x+y+z=-1\\x^2+y^2+z^2=12\end{cases}}\)

bạn xem thử hộ mik cái =)

Quang Đẹp Trai
Xem chi tiết
Đặng Thị Thu Hiền
Xem chi tiết
Trần Thị Loan
28 tháng 12 2014 lúc 9:38

Áp dụng BĐT Cô - si cho 2 số \(\frac{xy}{z};\frac{yz}{x}\)dương ta có: \(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}.\frac{yz}{x}}=2\sqrt{y^2}=2y\)(1)

Tương tự. \(\frac{yz}{x}+\frac{zx}{y}\ge2\sqrt{\frac{yz}{x}.\frac{zx}{y}}=2\sqrt{z^2}=2z\) (2);

\(\frac{xy}{z}+\frac{zx}{y}\ge2\sqrt{\frac{xy}{z}.\frac{zx}{y}}=2\sqrt{x^2}=2x\)(3)

Cộng từng vế của (1)(2)(3) ta được \(2.\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)\ge2\left(x+y+z\right)=2\Rightarrow P\ge1\)

Vậy Min P = 1 tại x= y = z = 1/3

Dương Thiên Tuệ
Xem chi tiết
Khiết Hảo
Xem chi tiết
Đinh Thùy Linh
3 tháng 6 2016 lúc 23:57

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=1+2\left(ab+bc+ca\right).\)

\(\Rightarrow A=\left(ab+bc+ca\right)=\frac{1}{2}\left(a+b+c\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)với mọi a,b,c

Vậy A nhỏ nhất bằng -1/2 khi a+b+c =0

Bacdau)
29 tháng 5 2022 lúc 6:48

Ta có : \((x-\dfrac{1}{3})^2+(y-\dfrac{1}{3})^2+(z-\dfrac{1}{3})^2>=0\)

\(=>x^2+y^2+z^2-\dfrac{2}{3}(x+y+z)+\dfrac{1}{3}\ge0\)

\(=>x^2+y^2+z^2+\dfrac{1}{3}\ge\dfrac{2}{3}(x+y+z)\)

\(=>1+\dfrac{1}{3}=\dfrac{4}{3}\ge\dfrac{2}{3}(x+y+z)\)

\(=>x+y+z\le2\)

Do đó : \((a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)=1+2(ab+bc+ca).\)

\(=>A=(ab+ac+bc)=\dfrac{1}{2}(a+b+c)^2-\dfrac{1}{2}\le\dfrac{1}{2}.2^2-\dfrac{1}{2}=\dfrac{3}{2}\)

Bacdau)
29 tháng 5 2022 lúc 6:48

Ta có : \((x-\dfrac{1}{\sqrt{3}})^2+(y-\dfrac{1}{\sqrt{3}})^2+(z-\dfrac{1}{\sqrt{3}})^2>=0\)

\(=>x^2+y^2+z^2-\dfrac{2}{\sqrt{3}}(x+y+z)+1\ge0\)

\(=>x^2+y^2+z^2+1\ge\dfrac{2}{\sqrt{3}}(x+y+z)\)

\(=>1+1=2\ge\dfrac{2}{\sqrt{3}}(x+y+z)\)

\(=>x+y+z\le\sqrt{3}\)

Do đó : \((a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)=1+2(ab+bc+ca).\)

\(=>A=(ab+ac+bc)=\dfrac{1}{2}(a+b+c)^2-\dfrac{1}{2}\le\dfrac{1}{2}.\sqrt{3}^2-\dfrac{1}{2}=\dfrac{2}{2}=1\)

Đỗ Ngọc Giang
Xem chi tiết
Phạm Thị Minh Hạnh
9 tháng 5 2019 lúc 23:15

 Mình nghĩ thế này ạ

xy + 2(yz + xz) =5 => xy + 2yz + 2xz =5

Mình áp dụng bất đẳng thức này nhé :)
Ta có:  \(\left(x-y\right)^2\ge0\forall x,y\)

\(\Rightarrow x^2+y^2\ge2xy\forall x,y\)

\(\Rightarrow\frac{1}{2}\left(x^2+y^2\right)\ge xy\forall x,y\)(1)

Chứng minh tương tự ta được \(y^2+z^2\ge2yz\forall y,z\)(2)

\(x^2+z^2\ge2xz\forall x,z\)(3)

Cộng vế (1) (2) (3) ta được \(\frac{1}{2}\left(x^2+y^2\right)+y^2+z^2+x^2+z^2\ge xy+2yz+2xz\forall x,y,z\)

\(\Rightarrow\frac{1}{2}x^2+\frac{1}{2}y^2+x^2+y^2+z^2+z^2\)\(\ge5\)\(\forall x,y,z\)

\(\Rightarrow\frac{3}{2}x^2+\frac{3}{2}y^2+2z^2\ge5\forall x,y,z\)

nhân cả 2 vế với 2 nè

\(\Rightarrow3x^2+3y^2+4z^2\ge10\forall x,y,z\)

\(\Rightarrow3\left(x^2+y^2\right)+4z^2\ge10\forall x,y,z\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\y=z;x=z\\xy+2\left(yz+xz\right)=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x^2+2.\left(x^2+x^2\right)=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=z\\5x^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=z\\x^2=1\end{cases}\Leftrightarrow}}\)x=y=z = 1 hoăc 

Vậy giá trị nhỏ nhất của biểu thức là 10 tại x=y=z=1;-1

Nguyễn Đức Duy
Xem chi tiết
Mai Thành Đạt
Xem chi tiết
Đinh Đức Hùng
15 tháng 10 2017 lúc 19:41

Ta có : \(\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\le\left(x.1+y.1+z.1\right)^2\) (bđt Bunhiacopxki)

\(\Leftrightarrow x^2+y^2+z^2\le\frac{\left(x+y+z\right)^2}{3}\) hay \(1\le\frac{\left(x+y+z\right)^2}{3}\)

\(\Rightarrow\left(x+y+z\right)^2\ge3\Rightarrow x+y+z\ge\sqrt{3}\) (do x;y;z dương)

Áp dụng bđt AM - GM ta có :

\(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}.\frac{yz}{x}}=2y\)

\(\frac{xy}{z}+\frac{xz}{y}\ge2\sqrt{\frac{xy}{z}.\frac{xz}{y}}=2x\)

\(\frac{yz}{x}+\frac{xz}{y}\ge2\sqrt{\frac{yz}{x}.\frac{xz}{y}}=2z\)

Cộng vế với vế ta được :

\(2C\ge2\left(x+y+z\right)=2\sqrt{3}\Rightarrow C\ge\sqrt{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

Mai Thành Đạt
15 tháng 10 2017 lúc 19:48

Đức Hùng hình như áp dụng sai  ( ngược dấu ) BĐT Bunhiacopxki rồi