Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Diệu Thảo
Xem chi tiết
Luật Lê Bá
Xem chi tiết
Xuân Lộc
Xem chi tiết
hello
8 tháng 4 2018 lúc 19:26

bình phương (1/a+1/b+1/c) rồi áp dụng HĐT tính bình thường

Trang Hoang
Xem chi tiết
Trần Đức Thắng
19 tháng 10 2015 lúc 16:42

a + b + c = 0 => c = -a - b ; b= -a - c ; a =  - b - c 

Thay vào Q ta có :

\(Q=\frac{1}{a^2+b^2-\left(a+b\right)^2}+\frac{1}{b^2+c^2-\left(b+c\right)^2}+\frac{1}{a^2+c^2-\left(a+c\right)^2}\)

\(Q=\frac{1}{a^2+b^2-a^2-b^2-2ab}+\frac{1}{b^2+c^2-b^2-c^2-2bc}+\frac{1}{c^2+a^2-c^2-a^2-2ac}\)

\(Q=\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac}=\frac{c+a+b}{-2abc}=0\)

đỗ Hoàng Gia HUy
Xem chi tiết
Trương Việt Hoàng
25 tháng 7 2016 lúc 16:05

1/2 nhá

ngoc beall
Xem chi tiết
Trịnh Hoàng Việt
Xem chi tiết
Akira Kinomoto
Xem chi tiết
Nguyễn Linh Chi
13 tháng 10 2019 lúc 22:49

Sử dụng: 

\(A^3+B^3+C^3-3ABC=\left(A+B+C\right)\left(A^2+B^2+C^2-AB-BC-AC\right)\) (1)

Áp dụng vào bài:

\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3-3\left(a-1\right)\left(b-2\right)\left(c-3\right)\)

\(=\left(a-1+b-2+c-3\right)\)\(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2\)

\(+\left(a-1\right)\left(b-2\right)+\left(a-1\right)\left(c-3\right)+\left(b-2\right)\left(c-3\right)\)]

<=> \(0-3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

( vì \(a-1+b-2+c-3=a+b+c-6=6-6=0\))

<=> \(\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

<=>  a = 1 hoặc b = 2 hoặc c = 3.

Không mất tính tổng quát: g/s : a = 1

Khi đó: b + c =5

Ta có:  \(T=\left(b-2\right)^{2n+1}+\left(c-3\right)^{2n+1}\)

\(=\left(b-2+c-3\right).A\)

\(=\left(b+c-5\right).A\)

\(=0.A=0\)

Với \(A=\left(b-2\right)^{2n}-\left(b-2\right)^{2n-1}\left(c-3\right)+\left(b-2\right)^{2n-2}\left(c-3\right)^2-...+\left(c-3\right)^{2n}\)

Tương tự b = 2; c= 3 thì T = 0.

Vậy T = 0.

Châu Lê
Xem chi tiết
Nguyễn Anh Quân
21 tháng 12 2017 lúc 21:26

a+b+c = 0 <=> (a+b+c)^2 = 0

<=> 2(ab+bc+ca) = 0 - (a^2+b^2+c^2) = 0 - 1 = -1

<=> ab+bc+ca = -1/2

<=> (ab+bc+ca)^2 = 1/4

<=> a^2b^2+b^2c^2+c^2a^2 = 1/4 - 2abc.(a+b+c) = 1/4 - 0 = 1/4

Có : a^2+b^2+c^2 = 1

<=> (a^2+b^2+c^2) = 1

<=>  A = a^4+b^4+c^4 = 1 - 2.(a^2b^2+b^2c^2+c^2a^2) = 1 - 2.1/4 = 1/2

Vậy A = 1/2

k mk nha