Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyenanhduchi
Xem chi tiết
Nhật Minh Trần
16 tháng 11 2021 lúc 17:07

    \(x^3-y^3-2y^2-3y-1=0\)

\(<=>x^3=y^3+2y^2+3y+1\)\(y^3+3y^2+3y+1=(y+1)^3\)(vì \(y^2\)≥0) (1)

Ta có:\(x^3=y^3+2y^2+3y+1>y^3-3y^2+3y-1\)\(=(y-1)^3\) (2)

Từ (1) và (2) 

\(=>(y-1)^3< y^3+2y^2+3y+1=x^3 =<(y+1)^3\)

\(=>y^3+2y^2+3y+1=y^3,(y+1)^3\)

Xong giải ra thôi

Nhật Minh Trần
16 tháng 11 2021 lúc 17:07

Rất xin lỗi bạn vì đến năm 2021 bn ms nhận được câu trả lời

hyun mau
Xem chi tiết
Nhật Minh Trần
16 tháng 11 2021 lúc 17:37

sao tôi toàn gặp 2015 thế nhỉ

Nhật Minh Trần
16 tháng 11 2021 lúc 17:38

Cái này bộ ba pytago nên bạn chỉ cần cm x=2 là đc

nguyễn minh quý
Xem chi tiết
Nguyễn Minh Quý
Xem chi tiết
bui thi nhat linh
Xem chi tiết
Nhật Minh Trần
16 tháng 11 2021 lúc 11:32

bạn làm giống như tìm x để nó là số cp thôi

 

 

Nhật Minh Trần
16 tháng 11 2021 lúc 14:09

Đặt A=\(1+x+x^2+x^3+x^4\)

=>4A=\(4x^4+4x^3+4x^2+4x+4\)

    4A=\((4x^4+4x^3+x^2)+(x^2+4x+4)+2x^2\)\(=(2x^2+x)^2+(x+2)^2+2x^2>(2x^2+x)^2\) (1)

Lại có:

4A=\((4x^4+x^2+2^2+4x^3+4x+8x^2)-5x^2\)

4A=\((2x^2+x+2)^2-5x^2\)\(<(2x^2+x+2)^2\)(2)

Vì A là số chính phương

=>4A cũng là số chính phương

Từ (1) và (2)

=>4A=\((2x^2+x+1)^2\)

Mà 4A=4\((1+x+x^2+x^3+x^4)\)

=>\((2x^2+x+1)^2=4(1+x+x^2+x^3+x^4)\)

Từ đây giải phương trình ra thôi

Đinh Thị Ngọc Anh
Xem chi tiết
namekaze minato
Xem chi tiết
Nguyễn Hoàng Tiến
9 tháng 5 2016 lúc 19:37

Ta có: \(\left(x+3\right)\left(x-3\right)=x^2-9=16\)

\(x^2=25\)

\(x=5;x=-5\)

hải nguyễn
9 tháng 5 2016 lúc 20:51

éo tin đc bài này cx hỏi

nguyen thi thuy
Xem chi tiết
_Guiltykamikk_
27 tháng 2 2019 lúc 11:57

a) Thay \(x=1\)vào pt ta được :

\(1+k-4-4=0\)

\(\Leftrightarrow k-7=0\)

\(\Leftrightarrow k=7\)

b) Thay \(k=7\)vào pt ta được :

\(x^3+7x^2-4x-4=0\)

\(\Leftrightarrow\left(x^3-x^2\right)+\left(8x^2-8x\right)+\left(4x-4\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)+8x\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+8x+4=0\end{cases}}\)

\(x-1=0\Leftrightarrow x=1\)

\(x^2+8x+4=0\)

Ta có :  \(\Delta=8^2-4\times4=48>0\)

\(\Rightarrow\)pt có 2 nghiệm : \(\orbr{\begin{cases}x_1=\frac{-8-\sqrt{48}}{2}=-4-2\sqrt{3}\\x_2=\frac{-8+\sqrt{48}}{2}=-4+2\sqrt{3}\end{cases}}\)

Vậy ...

Trần ngô hạ uyên
Xem chi tiết
Vũ Tiến Manh
12 tháng 10 2019 lúc 16:38

<=> (x-4)(x-3) = \(\sqrt{3}\)(y+1) 

Nếu y là số nguyên khác -1 thì y+1 là số nguyên; \(\sqrt{3}\)là số vô tỉ nên \(\sqrt{3}\left(y+1\right)\)là số vô tỉ

mà x-4 và x-3 đều là số nguyên nên (x-3)(x-4) là số nguyên => vô lý

vậy y = -1 => (x-4)(x-3)=0 <=> x=4 hoặc x= 3

vậy có 2 nghiêm thỏa mãn (x;y) = (4;-1); (x;y) = (3;-1)