1/2.2/3.3/4. ... .99/100.100/101
So sánh
A=1.1!+2.2!+3.3!+...+100.100!/1.199+2.197+3.195+...+100.1
B=99!/3
(! là giai thừa nhé.vd:2=1×2,3=1×2×3,4=1×2×3×4...)
Tính:
\(C=\) \(\frac{1.1!}{1!.2!}+\frac{2.2!}{2!.3!}+\frac{3.3!}{3!.4!}+......+\frac{100.100!}{100!.101!}\)
toán đúng rồi đó ban, nhưng mình làm rồi
A=1+2.2!+3.3!+4.4!+...+100.100!
tính tổng D=1+1.1!+2.2!+3.3!+...+100.100!
1/2.2+1/3.3+1/4.4+....+1/100.100<1
1/2.2 < 1/1.2
1/3.3 < 1/2.3
..................
1/100.100 < 1/99.100
=> <
Ta có: \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{100.100}=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)
Vì \(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
\(\frac{1}{4^2}<\frac{1}{3.4}\)
.....
\(\frac{1}{100^2}<\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}<1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<1\left(đpcm\right)\)
1/2.2 < 1/1.2
1/3.3 < 1/2.3
..................
1/100.100 < 1/99.100
=> <
A=1!+2.2!+3.3!+...+100.100!
Nhanh giùm !!!
=2.1!-1!+3.2!-2!+4.3!-3!+...+101.100!-100!
=2!-1!+3!-2!+4!-3!+...+101!-100!
=101!-1
Chứng minh rằng : 1/2.2+1/3.3+...+1/100.100<1
Có : 1/2^2+1/3^2+....+1/100^2 < 1/1.2+1/2.3+....+1/99.100 = 1-1/2+1/2-1/3+....+1/99-1/100 = 1-1/100 < 1
=> ĐPCM
k mk nha
Chứng minh : 1/2.2+1/3.3+......+ 1/100.100<1
Ta có : 1/2.2 < 1/1.2
1/3.3 < 1/2.3
.
.
.
1/100.100<1/99.100
==> 1/2.2+1/3.3+...+1/100.100 < 1/1.2 + 1/2.3+....+1/99.100
=> A < 1-1/100
=> A<99/100<100/100=1
==> a<1
1/2.2 + 1/3.3 + 1/4.4 +...+ 1/99.99 + 1/100.100