cho a,b là các chữ số, chứng minh: nếu 6a + 11b chia hết cho 31 thì b0a chia hết cho 31
cho a,b là các chữ số, chứng minh: nếu 6a + 11b chia hết cho 31 thì b0a chia hết cho 31
Cho a và b là các chữ số. Chứng minh rằng nếu 6a+11b chia hết cho 31 thì b0a chia hết cho 31
b0a= 100.b+a=5.31.b+31.a-(30.a+55.b)=31.(a+5b)-5.(6.a+11.b)
Ta thấy 31.(a+5b) chia hết cho 31 và 6.a+11.b chia hết cho 31 nên 5.(6.a+11.b) chia hết cho 31 => b0a chia hết cho 31
cmr nếu 6a + 11b chia hết cho 31 thì b0a cia hết cho 31
Cho a,b là các số nguyên. Chứng minh rằng nếu 6a+11b chia hết cho 31 thì thì a+7b cũng chia hết cho 31. Điều ngược lại có đúng ko?
gọi ab là xy
6x+11y chia hế
31y chia hết cho 31 ﴾vì 31y cũng chia hết cho 31﴿
=> 6x + 42y chia hết cho 31
=> 6﴾x+7y﴿ chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên
x+7y buộc phải chia hết cho 31 ﴾ĐPCM﴿
Cho a,b là các số nguyên. CMR nếu 6a + 11b chia hết cho 31 thì a + 7b cũng chia hết cho 31. Cần gấp ạ
Ta có 6a + 11b chia hết cho 31
Vậy: 6a + 42b - 31b = 6x(a+7b) - 31xb chia hết cho 31
nên: 6x(a + 7b) chia hết cho 31
Do vậy: a + 7b chia hết cho 31 (đpcm)
Cho a,b là các số nguyên . Chứng minh rằng 6a + 11b chia hết cho 31 khi và chỉ khi a + 7b chia hết cho 31
Cho a, b là các số nguyên. Chứng minh rằng 6a + 11b chia hết cho 31 khi và chỉ khi a + 7b chia hết cho 31
cho a và b là các số tự nhiên thỏa mãn 6a+11b chia hết cho 31.Chứng minh rằng a +7b chia hết cho 31
Cho a,b thuộc Z,(6a+11b)chia hết cho 31. Chứng minh(a+7b)chia hết cho 31?Điều ngược lại có đúng không?