Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho a,b là các chữ số, chứng minh: nếu 6a + 11b chia hết cho 31 thì b0a chia hết cho 31
Cho a và b là các chữ số. Chứng minh rằng nếu 6a+11b chia hết cho 31 thì b0a chia hết cho 31
cmr nếu 6a + 11b chia hết cho 31 thì b0a cia hết cho 31
Cho a,b là các số nguyên. Chứng minh rằng nếu 6a+11b chia hết cho 31 thì thì a+7b cũng chia hết cho 31. Điều ngược lại có đúng ko?
Cho a,b là các số nguyên. CMR nếu 6a + 11b chia hết cho 31 thì a + 7b cũng chia hết cho 31. Cần gấp ạ
Cho a,b là các số nguyên . Chứng minh rằng 6a + 11b chia hết cho 31 khi và chỉ khi a + 7b chia hết cho 31
Cho a, b là các số nguyên. Chứng minh rằng 6a + 11b chia hết cho 31 khi và chỉ khi a + 7b chia hết cho 31
cho a và b là các số tự nhiên thỏa mãn 6a+11b chia hết cho 31.Chứng minh rằng a +7b chia hết cho 31
Cho a,b thuộc Z,(6a+11b)chia hết cho 31. Chứng minh(a+7b)chia hết cho 31?Điều ngược lại có đúng không?