Tìm các số x, y, z biết:
x-1/2=y-2/3=z-3/4 và x+2y+3z=14
Tìm các số x, y, z biết:x : y : z = 3 : 4 : 5 và 2x2+ 2y2-3z2= -100
Tìm các số x,y,zTìm x,y,z biết x-1/2=y-2/3=z-3/4 và x-2y-3z=14
Tìm x, y ,z biết:x/2=2y/3=3z/4 và x+y+z=145
\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\Rightarrow\frac{2x}{4}=\frac{2y}{3}=\frac{3z}{4}=\frac{2\left(x+y+x\right)+z}{4+3+4}=\frac{2.145+z}{11}\)
\(\Rightarrow\frac{3z}{4}=\frac{290+z}{11}\Rightarrow z=10\)
Từ đó tìm ra x,y thông qua biểu thức \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}=\frac{3.10}{4}=\frac{15}{2}\)
Theo bài ra ta cs
\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}\)và \(x+y+z=145\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x+y+z}{2+\frac{3}{2}+\frac{4}{3}}=\frac{145}{\frac{29}{6}}=30\)
\(\hept{\begin{cases}\frac{x}{2}=30\\\frac{y}{\frac{3}{2}}=30\\\frac{z}{\frac{4}{3}}=30\end{cases}\Rightarrow\hept{\begin{cases}x=60\\y=45\\z=40\end{cases}}}\)
x/2=2y/3=3z/4
=> x= 4y/3 ; z= 8y/9
Co x+y+z=145
=> 4y/3+y+8y/9=145
=>12y/9+9y/9+8y/9=145
=> 29y= 145*9
=> y= (29*5*9)/29= 45
=> x=60
=> Z=40
Vay x= 60 ; y=45 ; z=40
Tìm các số x, y biết
x=y/2=z/3 và 4x-3y+2z=36
x-1/2=y-2/3=z-3/4 và x-2y+3z=14
Tìm các số x;y;z biết
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) Và x-2y+3z=14
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=>\frac{x-1}{2}=\frac{2\left(y-2\right)}{6}=\frac{3\left(z-3\right)}{12}=>\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Theo t/c dãy tỉ số=nhau:
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}=\frac{x-1-2y+4+3z-9}{8}\)
\(=\frac{\left(x-2y+3z\right)-\left(1-4+9\right)}{8}=\frac{14-6}{8}=\frac{8}{8}=1\)
Do đó: \(\frac{x-1}{2}=1=>x-1=2=>x=3\)
\(\frac{y-2}{3}=1=>y-2=3=>y=5\)
\(\frac{z-3}{4}=1=>z-3=4=>z=7\)
Vậy x=3;y=5;z=7
tìm x,y,z biết : x-1/2=y-2/3=z-3/4 và x-2y +3z=14
ta có :
Tìm x, y, z biết x-1/2=y-2/3=z-3/4 và x+2y+3z=14
x−1/2=y−2/3=z−3/4
Hay: x−1/2=2(y−2)/6=3(z−3)/12
x−1/2=2y−4/6=3z−9/12
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x−1/2=2y−4/6=3z−9/12=(x−1)−(2y−4)+(3z−9)/2−6+12=x−1−2y+4+3z−9/2−6+12 =x−2y+3z−6/8=14−6/8=1
Suy ra : x - 1 = 2 => x = 3
y - 2 = 3 => y = 5
z - 3 = 4 => z = 7
2 cách
cách 1 đặt k
cách 2 dùng dãy tỉ số = nhau
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{\left(x-1\right)+2.\left(y-2\right)+3.\left(z-3\right)}{2+2.3+3.4}=\frac{x-1+2y-4+3z-9}{2+6+12}\)
\(=\frac{\left(x+2y+3z\right)+\left(-1-4-9\right)}{20}=\frac{14-14}{20}=0\)
suy ra: \(\frac{x-1}{2}=0\Rightarrow x-1=0\Rightarrow x=1\)
\(\frac{y-2}{3}=0\Rightarrow y-2=0\Rightarrow y=2\)
\(\frac{z-3}{4}=0\Rightarrow z-3=0\Rightarrow z=3\)
Tìm x, y, z biết:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\) và x - 2y + 3z = 14.
tìm x,y,z biết :
(x-1)/2=(y-2)/3=(z-3)/4 và x-2y+3z=14
\(\frac{\left(x-1\right)}{2}=\frac{y-2}{3}=\frac{\left(x-3\right)}{4}\)
Hay : \(x-\frac{1}{2}=\frac{2\left(y-2\right)}{6}=\frac{3\left(x-3\right)}{12}\)
\(x-\frac{1}{2}=2y-\frac{4}{6}=3z-\frac{9}{12}\)
Ap dung tinh chat cua day ti so bang nhau , ta co
\(x-\frac{1}{2}=2y-\frac{4}{6}=3z-\frac{9}{12}=\frac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}=x-2y+3z-\frac{6}{8}=14-\frac{6}{8}=1\)
Nen : x - 1 = 2 => x = 3
y - 2 = 3 => y = 5
z - 3 = 4 => z = 7
Cách 1 : Nhân tỉ số thứ hai , thứ ba của \((1\) lần lượt với và 3 ta được :
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-2y+3z-6}{2-6+12}=\frac{14-6}{8}=1\)
Suy ra : x - 1 = 2.1 => x = 3 ; y - 2 = 3.1 => y = 5 ; z - 3 = 4 . 1 => z = 7
Cách 2: Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k(k\inℤ)\)
=> \(\hept{\begin{cases}x=2k+1\\y=3k+2\\z=4k+3\end{cases}(}2)\)
Thay 2 vào 1 ta có :
\(2k+1-6k-4+12k+9=14\)
\(\Rightarrow8k+6=14\)
\(\Rightarrow8k=8\)
\(\Rightarrow k=1\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot1+1=3\\y=3\cdot1+2=5\\z=4\cdot1+3=7\end{cases}}\)
Vậy x = 3 ; y = 5 ; z = 7