hãy chứng tỏ rằng nếu a/b < c/d(b,d>0) thì a/b < a+c/b+d < c/d
a)Chứng tỏ rằng nếu a/b < c/d ( b>0, d>0) thì a/b < a + c/b + d < c/d
b)Hãy viết ba số hữu tỉ xen giữa -1/3 và -1/4
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
tick cho mình nhé
a) Chứng tỏ rằng nếu a/b < c/d (b > 0, d >0) thì a/b < a +c/b + d < c/d.
b) Hãy viết ba số hữu tỉ xen giữa -1/3 và -1/4.
b) -1/3 = -4/12 (1)
-1/4 = -4/16 (2)
Từ (1) (2) suy ra -4/12 < -4/13 < -4/14 < -4/15 < -4/16
Vậy 3 số hữa tỉ xen giữa -1/3 và -1/4 là -4/13 ; -4/14 ; -4/15
Vì a/b < c/d nên ad < bc (1)
Xét tích a.(b+d) = ab.ad (2)
b.(a+c) = ba.bc (3)
Từ (1) (2) (3) suy ra a.(b+d) < b.(a+c) => a/b < a+c/b+d (4)
Từ (4) suy ra a+c/b+d < c/d (5)
Từ (4) (5) suy ra a/b < a+c/b+d < c/d
a. Chứng tỏ rằng nếu a/b <c/d (b>0;d>0) thì a/b<a+c/b+d<c/d
b. Hãy viết ba số hữu tỉ xen giữa -1/3 và -1/4
Ta có:a/b<c/d =>ad<bc (1)
Thêm ab vào (1) ta đc:
ad+ab<bc+ab hay a(b+d)<b(a+c) =>a/b<a+c/b+d (2)
Thêm cd vào 2 vế của (1), ta lại có:
ad+cd<bc+cd hay d(a+c)<c(b+d) => c/d>a+c/b+d (3)
Từ (2) và (3) suy ra:a/b<a+c/b+d<c/d
a) Chứng tỏ rằng nếu a/b < c/d (b>0,d>0) thì a/b < a+c/b+d < c/d
\(\frac{a}{b}< \frac{c}{d}\rightarrow ad< bc\)
\(\rightarrow ad+ab< bc+ab\)
\(\rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)
\(\rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) \(\left(1\right)\)
\(\text{Ta có:}\)
\(ad< bc\)
\(\rightarrow ad+cd< bc+cd\)
\(\rightarrow d.\left(a+c\right)< c.(b+d)\)
\(\rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) \(\left(2\right)\)
\(\text{Từ}\)\(\left(1\right)\)\(\text{và}\)\(\left(2\right)\)\(\rightarrow\)\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
chứng tỏ rằng nếu a\b <c\d (b>0,d>0) thì a\b < a+c\b+d < c\d
chứng tỏ rằng nếu a/b<c/d (b>0/d>0) thì a/b < a+c/b+d<c/d
* a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
* a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d)
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d
chứng tỏ rằng nếu a/b < c/d ( b>0,d>0) thì a/b < a+c/b+d<c/d
Ta có : \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
\(\Rightarrow ab+ad< ab+bc\)
\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
Ta lại có : \(ad< bc\Rightarrow ad+cd< bc+cd\)
\(\Rightarrow d.\left(a+c\right)< c.\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
Từ (1) và (2), suy ra nếu :\(\frac{a}{b}< \frac{c}{d}\)
thì : \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
chứng tỏ rằng nếu a/b < c/d (b>0/d>0) thì a/b < a+c/b+d <c/d
chứng tỏ rằng nếu a/b<c/d(b>0,d>0) thì a/b<a+c/b+d<c/d