Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mộc Nguyên
Xem chi tiết
nguyễn thùy dương
11 tháng 9 2016 lúc 10:54

a, trường hợp 1 :

a<b ta có :

ab+an<ab+bn

a.(b+n) < b(a+n)

a/b<a+n/b+

th2 bạn làm tương tử nhé thay dấu lớn thui phần b y hệt a nhé 100% đấy hum nay mình vừa học xong 

Uriki Kairi
Xem chi tiết
Phạm Phương Uyên
Xem chi tiết
Minh Châu
Xem chi tiết
Nguyễn Bùi Thế Anh
Xem chi tiết
nguyen ngoc tri
Xem chi tiết
ST
19 tháng 6 2017 lúc 10:48

Xét tích:

a(b + n) = ab + an       (1)

b(a + n) = ab + bn       (2)

TH1: nếu a < b

=> an < bn                 (3)

Từ (1),(2),(3) => a(b + n) < b(a + n) => \(\frac{a}{b}< \frac{a+n}{b+n}\)

TH2: nếu a > b

=> an > bn                 (4)

Từ (1),(2),(4) => a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)

TH3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)

Hà Huệ
Xem chi tiết
Hồ Thu Giang
26 tháng 8 2015 lúc 21:45

\(\frac{a}{b}=\frac{a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)

\(\frac{a+n}{b+n}=\frac{b\left(a+n\right)}{b\left(b+n\right)}=\frac{ab+bn}{b\left(b+n\right)}\)

TH1: a = b

=> ab+an = ab+bn

=> \(\frac{a}{b}=\frac{a+n}{b+n}\)

TH2: a > b

=> ab+an > ab+bn

=> \(\frac{a}{b}>\frac{a+n}{b+n}\)

TH3: a < b

=> ab+an < ab+bn

=> \(\frac{a}{b}

Lê Chí Công
26 tháng 8 2015 lúc 21:50

a/b=ab+an/b^2+bn

a+n/b+n=ab+bn/b^2+bn

xảy ra ba trường hợp

a<b thi a/b<a+n/b+n

a=b thì.....=...........

a>b thì ....>...........

 

Nam Cung Nguyet Kien
Xem chi tiết
Jin Air
12 tháng 6 2016 lúc 12:34

Vì ko cho điều kiện của a nên mình phải xét các trường hợp của a

Xét các trường hợp:

- a>b:

ta có: a.(b+n)=ab + an (n thuộc N*)

         b.(a+n)=ab + bn

=> ab+an > ab + bn ((vì a>b>0)

=> a.(b+n)>b(a+n) 

Hay a/b > a+n/b+n

- a=b:

ta có:

a.(b+n)=ab+an (n thuộc N*)

b.(a+n)=ab+bn

Mà a=b nên an=bn => ab+an=ab+bn 

hay a.(b+n)=b.(a+n)

=> a/b= a+n/b+n 

- 0<a<b:

ta có:

a(b+n)=ab + an (n thuộc N*)

b(a+n)= ab + bn

=> ab + an < ab + bn (do 0<a<b)

hay a(b+n) < b(a+n)

=> a/b < a+n/b+n

- a=0:

a/b=0

a+n/b+n= n/b+n > 0 (vì n thuộc N*)

=> a/b < a+n/b+n

- a<0

ta có:

a(b+n)= ba + an

b(a+n)= ab + bn

ba + an < ab + bn ( vì an<0; bn > 0)

hay a(b+n) < b(a+n)

=> a/b < a+n/b+n

Bạn tự kết luận nha

Lê Thị Loan
Xem chi tiết
minh anh
7 tháng 7 2015 lúc 13:24

TH1: Nếu a>b ( a/b > 1 )=>     a.n    >  b.n

                                     hay a.n+a.b > b.n+a.b (cùng cộng a.b )

                                            a.(n+b) > b.(n+a)

                                        =>    a/b   >  n+a/n+b

TH2: Nếu a<b (a/b<1)=>   a.n     <  b.n

                                 hay a.n+a.b<b.n+a.b

                                        a.(n+b)<b.(n+a)

                                     => a/b     < a+n/b+n

Tương tự nếu a=b thì ta có a/b=a+n/b+n