\(\frac{a}{b}=\frac{a.\left(b+n\right)}{b.\left(b+n\right)}=\frac{ab+an}{b^2+bn}\)
\(\frac{a+n}{b+n}=\frac{b.\left(a+n\right)}{b.\left(b+n\right)}=\frac{ab+bn}{b^2+bn}\)
\(TH1:a>b\)
\(=>an>bn=>\frac{a}{b}>\frac{a+n}{b+n}\)
\(TH2:a< b\)
\(=>an< bn=>\frac{a}{b}< \frac{a+n}{b+n}\)
VẬY .....
mà bài này l6 mak
so sánh a/b ( b > a) và a+n/b+n
ta có: b > a
=> b.n > a.n
=> b.a + b.n > a.n + a.b
b.(a+n) > a.(b+n)
\(\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\)