Chứng minh rằng: n2-15 là bội của n+3
CHỨNG MINH RẰNG: ABCABC LÀ BỘI CỦA 77
TÌM STN x sao x+15 là bội của x+3
abcabc = abc . 1001 = abc . 13 . 77 chia hết cho 77
=> abcabc chia hết cho 77 (đpcm)
Vì x+15 là bội của x+3
=> x+3+12 chia hết cho x+3
Vì x+3 chia hết cho x+3
=> 12 chia hết cho x+3
=> x+3 thuộc Ư(12)
Mà x là số tự nhiên
=> x > 0
=> x+3 > 3
=> x+3 \(\in\){3; 4; 6; 12}
x+3 | x |
3 | 0 |
4 | 1 |
6 | 3 |
12 | 9 |
KL: x \(\in\){0; 1; 3; 9}
Ta có: 77 = 7 x 11
abcabc = abc x 1001
Vì 1001 \(⋮\)7,11 nên abcabc \(⋮\)7,11
Mà (7;11) = 1 và 7 x 11 = 77 nên abcabc \(⋮\)77
\(\Rightarrow\)Đpcm.
Theo bài ra, ta có: x + 15 \(⋮\)x + 3
\(\Leftrightarrow\)(x+3) + 12 \(⋮\)x + 3
Mà x + 3 \(⋮\)x + 3 nên 12 \(⋮\)x + 3.
\(\Rightarrow\)x + 3 \(\in\)Ư(12)
Mà x \(\in\)N nên x \(\in\){1; 2; 3; 4; 6; 12}
Vậy x \(\in\){1; 2; 3; 4; 6; 12}.
Chứng minh rằng : 10n - 4 (n thuộc N*) là bội của 3 .
Chứng minh rằng : 92n+1 - 14 (n thuộc N*) là bội của 5 ,
10^n-4=10...0-4 (n số 0)
=999...96 (n-1 số 9)
Vì 999...96 có tổng các chữ số là 9n+6=3(3n+2) chia hết cho 3 nên 10^n-4 chia hết cho 3.
b/9^2n+1-14=9^2n.9-14=81^n.9-14=A1.9-14=A9-14=B5 chia hết cho 5. Vậy 9^2n+1 -14 chia hết cho 5
Chứng minh rằng : 10n - 4 ( n thuộc N*) là bội của 3.
Chứng minh rằng : 92n+1 - 14 ( n thuộc N*) là bội của 5.
câu 2 nè:
=92n*9-14
=...1*9-4-10
=...9 -4 -10
=...5-10
=...5 chia hết cho 5
10n- 4 = 99...6 (có n-1 chữ số 9)
theo dấu hiệu chia hết cho 3 thì 9(n-1) + 6 chia hết cho 3. Vì 9(n-1) chia hết cho 3, 6 chia hết cho 3
nên 10n- 4 chia hết cho 3 hay nó là bội của 3
câu 2
ta phân tích 9^2n+1 ra còn 9^2n*9 .Vì 2 nhân với bất cứ số tự nhiên nào cũng có chữ số tận cùng là 8 chữ số sau:0;2;4;6;8
Ta có bất cứ số tự nhiên có cơ số là 9 và số mũ chẵn thì có kết quả là.....1(có n chữ số). Mà 9^2n*9 sẽ có chữ số tận cùng 9 vì bất cứ số nào nhân với chữ số tận cũng bằng số cuối của số tự nhiên được nhân.
Ta có 9^2n+1-14=.....9-14.Ta phân tích 14=10+4 mà....9-4-10=(...9-4)-10 vì 9-4 =5 mà....5-10 cũng có chữ số cuối tận cùng là 5
Mà các số có chữ số tận củng cùng là 0 hoặc 5 luôn chia hết cho 5
suy ra 9^2n+1-14 là bội của 5
Vậy 9^2+1-14 là bội của 5
cho (3^n)+1 là bội của 10 (n thuộc N*)Chứng minh rằng (3^n+4)+1 cũng là bội của 10
nếu 3n+1 chia hết cho 10 thì phải cộng thêm 1 số chia hết cho 10 mà 4 ko chia hết cho 10
hay giả sử 3^n tận cùng là 5 thì mới +5 chia hết cho 10
mà 3n tận cùng là 3,9,7,1
nên ko thể có 3^n+4+1 chia hết cho 10
chứng minh rằng 3 mũ n + 1 là bội của 10 thì 3 mũ n+4 +1 cũng là bội của 10
viết rõ đầu bài bạn nhé 3n+1 không bao giờ bội của 10. vì nó chỉ có thể mang đuôi 1, 3, 9
Cho 3n+1 là bội của 10 (n ∈ N). Chứng minh rằng 3n+4+1 là bội của 10
vì 3n + 1 =10k => 3n = 10k -1
=> 3n+4 +1 = 34 . 3n +1 = 81.(10k -1) +1 = 810k - 81 +1 = 810k - 80 =10(81k -8) chia hết cho 10
=> 3n+4 +1 là Bội của 10
cho n là số nguyên dương, chứng minh rằng nếu 3n + 1 là bội của 10 thì 3n+4 +1 cũng là bội của 10
3n + 1 là bội của 10
=> 3n + 1 chia hết cho 10
mà 1 chia 10 dư 1
=> 3n chia 10 dư 9
- Xét 3n+4 + 1
= 3n.34 + 1
= 81.3n + 1
Có 81 chia 10 dư 1
3n chia 10 dư 9
=> 81.3n chia 10 dư 1.9
=> 81.3n chia 10 dư 9
mà 1 chia 10 dư 1
=> 81.3n + 1 chia hết cho 10
=> 3n+4 + 1 chia hết cho 10
=> 3n+4 + 1 là bội của 10
=> Đpcm
Nếu 3n +1 là bội của 10 thì 3n +1 có tận cùng là 0 => 3n có tận cùng là 9
Mà : 3n+4 +1 = 3n . 34 = .....9 . 81 + 1 = .....9 +1 = ......0
hay 3n+4 có tận cùng là 0 => 3n+4 là bội của 10
Vậy 3n+4 là bội của 10.
Chứng minh rằng :1+2+2²+2³+...+2^39 là bội của 15
Thanks bạn Trần Công Mạnh nhìu nha !!!
Gọi dãy số cần tìm là A
Ta có:
A=(1+2 +2^2 +2^3)+(2^4 +2^5 +2^6+ 2^7)+...+(2^36+ 2^37+ 2^38+ 2^39)
A=15+ 2^4(1+2+ 2^2+2^3)+...+2^36(1+2= 2^2+ 2^3)
A=15+ 2^4.15+...+2^36.15
A=15(2^4 + ...+2^36)chia hết cho 15 (Đpcm)
làm theo mik là ăn điểm ngay
Tìm số nguyên n để:
n2 − 7 là bội của n + 3 b) n + 3 là bội của n2 − 7